中国激光, 2010, 37 (7): 1789, 网络出版: 2010-07-13   

锥形光纤倏逝场激发微球腔高Q模式

Evanescent Wave Excitation of Microsphere High-Q Model Using Tapered Fiber
作者单位
1 中北大学 仪器科学与动态测试教育部重点实验室,山西 太原 030051
2 武警太原指挥学院训练部部队管理和后勤教研室,山西 太原 030051
摘要
介绍了高品质因子(Q) 回音壁模式(WGM)SiO2光学微球腔和锥形光纤耦合器的制备方法。应用窄线宽(300 kHz) 单模NewFocus可调谐激光器(1520-1570 nm)作为激发光源,使用直径1.2 μm锥形光纤激发直径150 μm的SiO2微球腔的光学模式,得到了其形貌共振谱线。从微球腔的温度分布出发,结合SiO2材料的热膨胀以及热光效应折射率变化机理,分析了微球腔在高功率光激发下热效应引起的共振谱平移(2.5 GHz/℃)。实验表明,控制WGM 激发功率,可有效抑制微球腔的热效应,且易于实现稳定的高Q模式。调整锥形光纤耦合激发角度,可以较好地抑制微球腔高阶模式,测得其共振谱线宽为22 MHz,对应的微球腔Q值为107。
Abstract
Fabrication methods of SiO2 optical microsphere cavities and tapered fibers are introduced. Using a tunable single-mode NewFocus laser (short-term linewidth of 300 kHz) with an adjustable extent of 1520-1570 nm as the excitation optical source,whispering gallery modes (WGM) of microsphere with a diameter of 150 μm are achieved through coupling a tapered fiber with waist diameter of 1.2 μm. The microsphere and the tapered fiber are all fabricated by experimental laboratory setup. Based on the microsphere cavity′s temperature distribution,binding the thermal expansion coefficient and the thermo-optical refractive index effects,resonant spectrum shift(2.5 GHz/℃)induced by the high pump power in the microcavity is analyzed. The experiments indicate that controlling the WGM pump power is an effective way to suppress microcavity thermal effects,and in this way it is easy to fulfill a stable high quality factor (Q) model. Through adjusting the tapered fiber pumping angle,higher-modes are suppressed effectively,and an ultra-narrow linewidth about 22 MHz is measured. The corresponding Q of this microsphere is 107.
参考文献

[1] 张远宪,韩德昱,祝昆 等. 包层介质折射率引起的回音壁模式光纤激光波长漂移 [J]. 中国激光,2009,36(3):691-694

    Zhang Yuanxian,Han Deyu,Zhu Kun et al.. Wavelength shift of whispering-gallery-mode fiber laser caused by fiber cladding refractive index [J]. Chinese J. Lasers,2009,36(3):691-694

[2] 单光存,黄维. 微腔中单分子对荧光共振能量转移光谱学的理论研究 [J]. 光学学报,2009,29(4):1049-1053

    Shan Guangcun,Huang Wei. Theoretical study of single-pair fluorescence resonant energy transfer spectroscopy in microcavity [J]. Acta Optica Sinica,2009,29(4):1049-1053

[3] 陈丽白,郭震宁,林介本. 一维光子晶体微腔在硅基材料发光中的应用研究 [J]. 光学学报,2008,28(9):1793-1797

    Chen Libai,Guo Zhenning,Lin Jieben. Study on application of one-dimensional photonic crystal microcavity to luminescence of silicon-based material [J]. Acta Optica Sinica,2008,28(9):1793-1797

[4] . Carmon,K. J. Vahala. Visible continuous emission from a silicamicro photonic device by third-harmonic generation[J]. Nature Physics, 2007, 3(6): 430-435.

[5] 江楠,杜飞,白然 等. 影响柱形微腔回音廊模激光抽运阈值能量的因素 [J]. 中国激光,2008,35(5):660-663

    Jiang Nan,Du Fei,Bai Ran et al.. Factor of influencing pumping threshold energy of whispering-gallery-mode laser in a cylindrical micro-cavity [J]. Chinese J. Lasers,2008,35(5):660-663

[6] 黄永箴,杨跃德,车凯军 等. 平面工艺制作的定向输出半导体激光器 [J]. 激光与光电子学进展,2009,46(2):46-48

    Huang Yongzhen,Yang Yuede,Che Kaijun et al.. Semiconductor laser of directional output maded by plane technology [J]. Laser & Optoelectronics Progress,2009,46(2):46-48

[7] 张春玉,肖力光,秦丽 等. 蓝色微腔有机发光器件 [J]. 光学学报,2009,29(7):1967-1972

    Zhang Chunyu,Xiao Liguang,Qin Li et al.. Blue color microcavity organic light emitting device [J]. Acta Optica Sinica,2009,29(7):1967-1972

[8] . Vollmer,S. Arnold. Whispering-gallery-mode biosensing:labelfree detection down to single molecules[J]. Nature Methods, 2008, 5(7): 591-596.

[9] Jijun Xiong,Yingzhan Yan,Zhe Ji et al.. Micro sensors based on planar microtoroid cavities [C]. SPIE,2009,7157:71570R

[10] 闫树斌,耿涛,张天才 等. 用于腔量子电动力学研究的铯原子双磁光阱 [J]. 中国激光,2006,33(2):190-194

    Yan Shubin,Geng Tao,Zhang Tiancai et al.. Cesium double magneto-optical trap for cavity quantum electrodynamics [J]. Chinese J. Lasers,2006,33(2):190-194

[11] . Anetsberger,R. Rivie`re,A. Schliesser et al.. Ultralow-dissipation optomechanical resonators on a chip[J]. Nature Photonics, 2008, 2(10): 627-633.

[12] . C. F. Matthews,A. Politi,A. Stefanov et al.. Manipulation of multiphoton entanglement in waveguide quantum circuits[J]. Nature Photonics, 2009, 3(6): 346-350.

[13] . M. Purcell. Spontaneous emission probabilities at radio frequencies[J]. Phys. Rev., 1946, 69: 681.

[14] A. Serpengüzel,A. Kurt,U. K. Ayaz. Silicon microspheres for electronic and photonic integration [J]. Photonics and Nanostructures-Fundamentals and Applications,2008,6(3,4):179-182

[15] . Xu,M. Han,A. Wang et al.. Second order parametric processes in nonlinear silica microspheres[J]. Phys. Rev. Lett., 2008, 100(16): 163905.

[16] . J. Vahala. Optical microcavities[J]. Nature, 2003, 424(1939): 839-846.

[17] . Koseki,B. Zhang,K. D. Greve. Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides[J]. Appl. Phys. Lett., 2009, 94(9): 051110.

[18] . K. Armani,T. J. Kippenberg,S. M. Spillan et al.. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 2003, 421(1371): 925-928.

[19] . Zamora,A. Díez,M. V. Andrés et al.. Interrogation of whispering-gallery modes resonances in cylindrical microcavities by backreflection detection[J]. Opt. Lett., 2009, 34(7): 1039-1041.

[20] . Pang,F. Gesuele,A. Bruyant et al.. Enhanced light coupling in sub-wavelength single-mode silicon on insulator waveguides[J]. Opt. Express, 2009, 17(9): 6939-6945.

[21] . J. Bartula,J. B. Ghandhi,S. T. Sanders et al.. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy[J]. Appl. Opt., 2007, 46(36): 8635-8640.

[22] . Blair,K. Zheng. Microresonator-enhanced Raman amplification[J]. J. Opt. Soc. Am. B, 2006, 23(6): 1117-1123.

[23] . H. Agha,Y. Okawachi,M. A. Foster et al.. Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres[J]. Phys. Rev. A, 2007, 76(4): 043837.

[24] . Guan,S. Arnold,M. V. Otugen. Temperature measurements using a microoptical sensor based on whispering gallery modes[J]. AIAA Journal, 2006, 44(10): 2385-2389.

[25] . 微球激光本征模的求解与分析[J]. 光电技术应用, 2006, 21(1): 28-30.

    . Solving and analysis of eigenmodes of microphere laser[J]. Electro-Optic Technology Application, 2006, 21(1): 28-30.

[26] . SiO2 微球腔形貌相关谱的识别指认与分析[J]. 集美大学学报(自然科学版), 2008, 13(2): 180-184.

    . Recognization and analysis of the morphology-dependent resonance spectra of silica optical microsphere[J]. Journal of Jimei University (Natural Science), 2008, 13(2): 180-184.

[27] 张磊,林国平,蔡志平 等. 石英玻璃微球吸收光谱上的结构共振 [J]. 光学学报,2007,27(1):94-97

    Zhang Lei,Lin Guoping,Cai Zhiping et al.. Structural resonances in absorption spectrum of quartz microsphere [J]. Acta Optica Sinica,2007,27(1):94-97

严英占, 吉喆, 王宝花, 闫树斌, 熊继军, 马骏. 锥形光纤倏逝场激发微球腔高Q模式[J]. 中国激光, 2010, 37(7): 1789. Yan Yingzhan, Ji Zhe, Wang Baohua, Yan Shubin, Xiong Jijun, Ma Jun. Evanescent Wave Excitation of Microsphere High-Q Model Using Tapered Fiber[J]. Chinese Journal of Lasers, 2010, 37(7): 1789.

本文已被 14 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!