光学学报, 2016, 36 (11): 1128001, 网络出版: 2016-11-08   

空间光学遥感器主镜柔性支撑的参数化设计

Parametric Design of Flexure Supporting for Optical Space Remote Sensor Primary Mirror
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为提高设计效率提出了一种空间光学遥感器柔性支撑参数化设计方法。分析了温度变化、装配误差两种工况下对柔性支撑形变的需求。并根据折衷规划理论设置柔性支撑的优化函数,以某空间光学遥感器主镜所用柔性支撑为例给出柔性支撑参数化设计的详细设计过程。经过参数化设计,主镜柔性支撑基频达到88.8 Hz,温度变化4 ℃,镜面的均方根(RMS)达到5.3 nm, 0.1 mm装配误差下的镜面RMS达到12.9 nm,光轴水平1 g重力镜面RMS达到5.0 nm。柔性支撑的性能显著提高并且所有设计满足指标。同时设计过程实现了计算机自动化设计,大大减少了人力投入,缩减了设计周期。
Abstract
A parametric design method for flexure supporting of the optical space remote sensor is presented to raise the design efficiency. The demands of flexure supporting deformation in the cases of temperature changes and assembly error are analyzed separately. The compromise programming method is used to establish optimal function of flexure supporting. Taking the flexure supporting used in the primary mirror of optical space remote sensor as example, the parametric design is provided in detail. After parametric design, the fundamental frequency of the flexure supporting is 88.8 Hz, the root mean square (RMS) of the mirror surface is 5.3 nm, when the temperature rise 4 ℃. The RMS is 12.9 nm when the assembly error is 0.1 mm, the RMS is 5.0 nm when 1 g gravity worked. The performance of flexure supporting significantly develops and all the design meets the targets. Computer automation design is applied during the design process, which greatly reduces the investment of human beings and the cycle of design at the same time.
参考文献

[1] 王忠素, 翟岩, 梅贵, 等. 空间光学遥感器反射镜柔性支撑的设计[J]. 光学 精密工程, 2010, 18(8): 1833-1840.

    Wang Zhongsu, Zhai Yan, Mei Gui, et al. Design of flexible support structure of reflector in space remote sensor[J]. Optics and Precision Engineering, 2010, 18(8): 1833-1840.

[2] 赵山杉, 毕树生, 宗光华, 等. 基于曲线柔性单元的新型大变形柔性铰链[J]. 机械工程学报, 2009, 45(4): 8-12.

    Zhao Shanshan, Bi Shusheng, Zong Guanghua, et al. New large-deflection flexure pivot based on curved flexure element[J]. Journal of Mechanical Engineering, 2009, 45(4): 8-12.

[3] 徐宏, 关英俊. 大口径SiC轻量化反射镜组件的结构设计[J]. 红外与激光工程, 2014, 43(S): 83-88.

    Xu Hong, Guan Yingjun. Structural design of large aperture SiC mirror subassembly[J]. Infrared and Laser Engineering, 2014, 43(S): 83-88.

[4] 于靖军, 裴旭, 毕树生, 等. 柔性铰链机构设计方法的研究进展[J]. 机械工程学报, 2010, 46(13): 2-13.

    Yu Jingjun, Pei Xu, Bi Shusheng, et al. State-of-arts of design method for flexure mechanisms[J]. Journal of Mechanical Engineering, 2010, 46(13): 2-13.

[5] 李宗轩, 陈雪, 张雷, 等. 大口径空间反射镜cartwheel型柔性支撑设计[J]. 光学学报, 2014, 34(6):0622003.

    Li Zongxuan, Chen Xue, Zhang Lei, et al. Design of cartwheel flexural support for a large aperture space mirror[J]. Acta Optica Sinica, 2014, 34(6): 0622003.

[6] 李海星, 丁亚林, 张洪文. 矩形反射镜结构支撑技术研究[J]. 光学学报, 2015, 35(5): 0523002.

    Li Haixing, Ding Yalin, Zhang Hongwen. Support system study of rectangular mirror[J]. Acta Optica Sinica, 2015, 35(5): 0523002.

[7] 陈酹滔. 零部件参数化设计方法研究与系统实现[D]. 南京: 南京理工大学, 2004.

    Chen Leitao. Research and systematic realization of parametric design method of parts[D]. Nanjing: Nanjing University of Science and Technology, 2004.

[8] 王克军, 董吉洪, 宣明, 等. Whiffletree结构中的柔节设计[J]. 长春理工大学学报(自然科学版), 2015, 38(4): 12-17.

    Wang Kejun, Dong Jihong, Xuan Ming, et al. The flexible structure design in the whiffletree structure[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2015, 38(4): 12-17.

[9] 辛宏伟, 刘巨, 刘磊. 小型光学遥感器主镜室的光机结构[J]. 光学 精密工程, 2015, 23(4): 1027-1033.

    Xin Hongwei, Liu Ju, Liu Lei. Support structure of primary mirror for small optical remote sensor[J]. Optics and Precision Engineering, 2015, 23(4): 1027-1033.

[10] 刘林华, 辛勇, 汪伟. 基于折衷规划的车架结构多目标拓扑优化设计[J]. 机械科学与技术, 2011, 30(3): 382-385.

    Liu Linhua, Xin Yong, Wang Wei. Multi-objective topology optimization for an off-road vehicle frame based on compromise programming[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(3): 382-385.

[11] Kihm H, Moon I K, Yang H S, et al. 1 m lightweight mirror design using genetic algorithm[C]. 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies. International Society for Optics and Photonics, 2012, 8415:841514.

[12] Michels G J, Genberg V L, Doyle K B, et al. Design optimization of actuator layouts of adaptive optics using a genetic algorithm[C]. Optics & Photonics 2005. International Society for Optics and Photonics, 2005, 5877: 58770L.

胡佳宁, 董吉洪. 空间光学遥感器主镜柔性支撑的参数化设计[J]. 光学学报, 2016, 36(11): 1128001. 胡佳宁, 董吉洪. Parametric Design of Flexure Supporting for Optical Space Remote Sensor Primary Mirror[J]. Acta Optica Sinica, 2016, 36(11): 1128001.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!