红外与毫米波学报, 2016, 35 (6): 741, 网络出版: 2017-01-12  

中红外高功率激光系统强光元件热损伤特性

Thermal damage mechanism of the optical element used in mid-infrared high power laser system
作者单位
国防科学技术大学 光电科学与工程学院, 湖南 长沙 410073
摘要
依托闭腔式氟化氘中红外高能激光器, 测量了元件表面污染物在连续波高能激光(3.16 kW/cm2)辐照下的温度, 测量发现污染物在1s内达到了热平衡, 温度维持在1 720 K; 建立了描述强光辐照下污染物热平衡过程的物理模型, 分析了污染物导致强光元件热损伤的物理机制; 研究发现污染物的尺度对强光元件的热损伤具有重要影响.对于中红外高反射强光光学元件, 若污染物的尺度小于20 μm一般不会造成强光元件的损伤, 若污染物的尺度大于200 μm一般会导致强光元件的损伤.研究结果对于提高强光元件的抗损伤性能, 保障中红外高能激光系统稳定运行具有重要意义.
Abstract
Based on the closed-cavity mid-infrared laser, the temperature of the contaminant was measured when it was irradiated by a cw high energy laser with power intensity 3.16 kW/cm2. It was found that the contaminant achieves thermal equilibrium in a second and then the temperature stays at 1720 K. A physical model was established to describe the process of the thermal equilibrium. The mechanism of the mirror’s thermal damage was analyzed. It shows that the contaminant size plays an important role in the thermal damage of the optical mirror. Only when the contaminant size is smaller than a critical size (~20 μm), the contaminant may reach thermal equilibrium and the optical mirror work well in the high energy laser system. If the contaminant size is quite large (>200 μm), the optical mirror will be damaged under the irradiation of high energy laser. The results are of great help for improving the anti-damage capability of the mirror and maintaining the security of the high energy laser system.
参考文献

[1] Alexander J G, Arthur H G. Laser induced damage of optical elementsa status report [J]. Appl. Opt., 1973, 12(4): 637-649.

[2] Manenkov A A. Fundamental mechanisms of laserinduced damage in optical materials: today’s state of understanding and problems [J]. Opt. Engineering, 2014, 53(1): 10901.

[3] Roger M Wood. LaserInduced Damage of Optical Materials [M]. London: Institute of Physics Publishing, 2003, 12-25.

[4] Carr C W, Radousky H B, Demos S G. Wavelength dependence of laserinduced damage: determining the damage initiation mechanisms [J]. Phys. Rev. Lett.. 2003, 91(12): 1204-1207.

[5] Raman R N, Demos S G, Shen N, et al. Damage on fused silica optics caused by laser ablation of surfacebound microparticles [J]. Opt. Express, 2016, 24(3): 2634-2647.

[6] Zhang Q H, Pan F, Luo J, et al. Optical and laser damage properties of HfO2/Al2O3 thin films deposited by atomic layer deposition [J]. J. Alloys Compd., 2016, 659: 288-294.

[7] Sudrie L, Couairon A, Franco M, et al. Femtosecond laserinduced damage and filamentary propagation in fused silica [J]. Phys. Rev. Lett., 2002, 89(18):186601.

[8] Zheng W G, Zu X T, Yuan X D, et al. Laserinduced damage of the high power laser device and related physical problems [M]. Beijing: Science Press (郑万国, 祖小涛, 袁晓东,等. 高功率激光装置的负载能力及其相关物理问题. 北京: 科学出版社), 2014, 190-200.

[9] Cheng X F, Miao X X, Wang H B, et al. Surface contaminant control technologies to improve laser damage resistance of optics [J]. Adv. Condens. Matter Phys., 2014, 41: 974245.

[10] ZHU RenJiang, PAN YingJun, ZHANG Peng, et al. Numerical analysis of thermal effects in semiconductor disk laser with heatspreader [J]. J.Infrared Millim.Waves(朱仁江, 潘英俊, 张鹏, 等. 半导体薄片激光器窗口散热模式的热效应. 红外与毫米波学报), 2014, 33(3): 272-277.

[11] Xing H, Zhu M, Chai Y, et al. Improving laser damage resistance of 355nm highreflective coatings by coevaporated interfaces [J]. Opt. Lett., 2016, 41(6): 1253.

[12] ZHU ZhiWu, CHENG XiangAi, WANG Dong, et al. Damage and its mechanism to the visible wavelength filter irradiated by femtosecond laser [J]. J.Infrared Millim.Waves(朱志武, 程湘爱, 王东, 等. 多波长飞秒激光损伤可见光滤光片的实验及机理. 红外与毫米波学报), 2012, 31(4): 330-335.

[13] ZHU RongZhen, WANG Rui, JIANG Tian, et al. Research of laser irradiation effect on monocrystalline silicon solar cells and single junction GaAs solar cells[J]. J.Infrared Millim.Waves(朱荣臻, 王睿, 江天, 等. 单晶Si、单结GaAs太阳能电池的激光损伤特性对比研究. 红外与毫米波学报), 2015, 34(4): 479-485.

[14] Qiu S R, Norton M A, Raman R N, et al. Impact of lasercontaminant interaction on the performance of the protective capping layer of 1 omega highreflection mirror coatings[J]. Appl. Opt., 2015, 54(29): 8607-8616.

[15] Fang X T, Yuan S F, Liu W G, et al. Absorption measurement of optical thin films under high power density with a Closed Cavity [J]. Chin. Opt. Lett., 2015, 13(3):033101.

[16] YU QiZheng. Principle of radiation heat transfer [M]. Harbin: Harbin Institute of Technology Press (余其铮. 辐射换热原理, 哈尔滨: 哈尔滨工业大学出版社), 2000:101-115.

[17] Holman J P. Heat transfer (10th Edition) [M]. New York: Addison Wesley Press, 2014, 317-417.

[18] MA QingFang, FANG RongSheng, XIANG LiCheng, et al. Practical handbook of thermophysical properties [M]. Beijing: China Agricultural Machinery Press (马庆芳, 方荣生, 项立成, 等. 实用热物理性质手册, 北京: 中国农业机械出版社), 2003:965-1068.

[19] HUANG Wei. Study on thin film technology for midfarinfrared laser coatings [D] Chengdu: Sichuan University(黄伟 中远红外激光薄膜技术研究. 成都: 四川大学), 2005:46-72.

韩凯, 闫宝珠, 许晓军, 刘泽金. 中红外高功率激光系统强光元件热损伤特性[J]. 红外与毫米波学报, 2016, 35(6): 741. HAN Kai, YAN Bao-Zhu, XU Xiao-Jun, LIU Ze-Jin. Thermal damage mechanism of the optical element used in mid-infrared high power laser system[J]. Journal of Infrared and Millimeter Waves, 2016, 35(6): 741.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!