光学学报, 2020, 40 (15): 1506004, 网络出版: 2020-08-14   

指数威布尔信道下FTN-OWC系统的信道容量分析 下载: 959次

Channel Capacity Analysis of FTN-OWC System Under Exponentiated Weibull Channel
作者单位
兰州理工大学计算机与通信学院, 甘肃 兰州 730050
引用该论文

曹明华, 康中将, 武鑫, 豆红霞, 王惠琴. 指数威布尔信道下FTN-OWC系统的信道容量分析[J]. 光学学报, 2020, 40(15): 1506004.

Minghua Cao, Zhongjiang Kang, Xin Wu, Hongxia Dou, Huiqin Wang. Channel Capacity Analysis of FTN-OWC System Under Exponentiated Weibull Channel[J]. Acta Optica Sinica, 2020, 40(15): 1506004.

参考文献

[1] Wang H Q, Wang X, Cao M H. Ergodic channel capacity of spatial correlated multiple-input multiple-output free space optical links using multipulse pulse-position modulation[J]. Optical Engineering, 2017, 56(2): 026103.

[2] 刘旻雯, 李迎春. OFDM-OAM光信号在大气湍流中的传输[J]. 光学学报, 2019, 39(7): 0706002.

    Liu M W, Li Y C. Propagation of OFDM-OAM optical signal in atmospheric turbulence[J]. Acta Optica Sinica, 2019, 39(7): 0706002.

[3] 马兵斌, 柯熙政, 张颖. 相干光通信系统中光束的偏振控制及控制算法研究[J]. 中国激光, 2019, 46(1): 0106002.

    Ma B B, Ke X Z, Zhang Y. Polarization control and control algorithm of beams in coherent optical communication system[J]. Chinese Journal of Lasers, 2019, 46(1): 0106002.

[4] Mazo J E. Faster-than-Nyquist signaling[J]. Bell System Technical Journal, 1975, 54(8): 1451-1462.

[5] YuhasM, FengY, BajcsyJ. On the capacity of faster-than-Nyquist MIMO transmission with CSI at the receiver[C]∥2015 IEEE Globecom Workshops. December 6-10, 2015, San Diego, CA, USA. New York: IEEE, 2015: 1- 6.

[6] Wang K, Liu A J, Liang X H, et al. A faster-than-Nyquist (FTN)-based multicarrier system[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 947-951.

[7] Zhu Y J, Wang W Y, Xin G. Faster-than-Nyquist signal design for multiuser multicell indoor visible light communications[J]. IEEE Photonics Journal, 2016, 8(1): 1-12.

[8] Chi N, Zhao J Q, Wang Z X. Bandwidth-efficient visible light communication system based on faster-than-Nyquist pre-coded CAP modulation[J]. Chinese Optics Letters, 2017, 15(8): 080601.

[9] Liang S Y, Jiang Z H, Qiao L, et al. Faster-than-Nyquist precoded CAP modulation visible light communication system based on nonlinear weighted look-up table predistortion[J]. IEEE Photonics Journal, 2018, 10(1): 7900709.

[10] Shan C, Zhou J, Guo D, et al. Hartley-domain DD-FTN algorithm for ACO-SCFDM in optical-wireless communications[J]. IEEE Photonics Journal, 2019, 11(4): 1-9.

[11] Ha Y, Niu W Q, Chi N. Frequency reshaping and compensation scheme based on deep neural network for a FTN CAP 9QAM signal in visible light communication system[J]. Proceedings of SPIE, 2019, 11048: 110482F.

[12] Barrios R, Dios F. Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves[J]. Optics Express, 2012, 20(12): 13055-13064.

[13] Barrios R, Dios F. Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence[J]. Optics & Laser Technology, 2013, 45: 13-20.

[14] 王惠琴, 李源, 胡秋, 等. 兰州地区夜间光强起伏特性实验[J]. 光子学报, 2018, 47(4): 0401001.

    Wang H Q, Li Y, Hu Q, et al. Experimental investigation on light intensity fluctuation at night in Lanzhou area[J]. Acta Photonica Sinica, 2018, 47(4): 0401001.

[15] 孙晶, 黄普明, 幺周石. Gamma-Gamma大气湍流下相干光通信分集接收技术研究[J]. 光学学报, 2018, 38(7): 0706002.

    Sun J, Huang P M, Yao Z S. Diversity reception technology in coherent optical communication over Gamma-Gamma atmospheric turbulence channel[J]. Acta Optica Sinica, 2018, 38(7): 0706002.

[16] Hefnawy ME, KramerG. Impact of spectrum sharing on the efficiency of faster-than-Nyquist signaling[C]∥2014 IEEE Wireless Communications and Networking Conference. April, 6-9 2014, Istanbul, Turkey. New York: IEEE, 2014: 648- 653.

[17] Adamchik VS, Marichev OI. The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system[C]∥Proceedings of the International Symposium on Symbolic and Algebraic Computation, August 20-24, 1990, Tokyo, Japan. New York: ACM, 1990: 212- 224.

[18] Rusek F, Anderson J B. Constrained capacities for faster-than-Nyquist signaling[J]. IEEE Transactions on Information Theory, 2009, 55(2): 764-775.

[19] Meijer G function. The Wolfram functions site[Z/OL].[2020-02-25]. http:∥functions.wolfram.com.

[20] 韩立强, 江红兵. 一种混合认知RF和MIMO FSO系统的中断概率分析[J]. 中国激光, 2018, 45(4): 0406001.

    Han L Q, Jiang H B. Outage probability analysis of a mixed cognitive RF and MIMO FSO system[J]. Chinese Journal of Lasers, 2018, 45(4): 0406001.

[21] BarriosR. Exponentiated Weibull fading channel model in free-space optical communications under atmospheric turbulence[D]. Barcelona: Universitat Politècnica de Catalunya, 2013: 116- 118.

曹明华, 康中将, 武鑫, 豆红霞, 王惠琴. 指数威布尔信道下FTN-OWC系统的信道容量分析[J]. 光学学报, 2020, 40(15): 1506004. Minghua Cao, Zhongjiang Kang, Xin Wu, Hongxia Dou, Huiqin Wang. Channel Capacity Analysis of FTN-OWC System Under Exponentiated Weibull Channel[J]. Acta Optica Sinica, 2020, 40(15): 1506004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!