光学学报, 2016, 36 (6): 0614005, 网络出版: 2016-05-25   

不同抽运波形条件下参量荧光对信噪比的影响

Impact of Optical Parametric Fluorescence on Temporal Contrast for Various Pump Profiles
王波鹏 1,2,3,*粟敬钦 1,3曾小明 1,3周凯南 1,3王晓东 1,3左言磊 1,3王逍 1,3郭仪 1,3朱启华 1,3景峰 1,3
作者单位
1 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
2 中国科学技术大学光学与光学工程系, 安徽 合肥 230026
3 中国工程物理研究院等离子体重点实验室, 四川 绵阳 621900
摘要
光参量啁啾脉冲放大器(OPCPA)是现阶段最常用的超短超强脉冲放大器之一。参量荧光是OPCPA的本征量子噪声,其形成的脉冲底座会大大降低输出信号脉冲的信噪比。采用数值模拟的方法,研究了不同脉宽比和抽运波形条件下参量荧光的演化规律及其对信噪比的影响。计算结果表明,在增益一定的情况下,随着脉宽比的增大,信噪比与效率-带宽积都呈先增大后减小的趋势。存在一个最佳脉宽比,使得两者同时达到最大。脉宽比小于此最佳值时,随着超高斯抽运光波形阶数的增大,信噪比减小而效率-带宽积增大;脉宽比大于此最佳值时,随着超高斯抽运光波形阶数的增大,信噪比增大而效率-带宽积减小。
Abstract
The optical parametric chirped-pulse amplifier (OPCPA) is one of the widely utilized amplifiers to boost ultra-short and ultra-intense pulses. The optical parametric fluorescence is the intrinsic quantum noise of OPCPA and the formed pedestal can degrade the temporal contrast of the output signal pulses greatly. Numerical simulation is adopted to study the evolution of the parametric fluorescence and its impact on the temporal contrast under various signal-to-pump duration ratios and various pump profiles. The results indicate that when the gain is fixed, the temporal contrast and the product of conversion efficiency and bandwidth increase firstly and then decrease with the increasing duration ratio. There is an optimal ratio to maximize the temporal contrast and the product simultaneously. When the ratio is lower than the optimal value, the temporal contrast decreases and the product increases with the increasing order of super-Gaussian pump profiles. The temporal contrast increases and the product decreases with the increasing order when the duration ratio is higher than the optimum.
参考文献

[1] Gaul E W, Martinez M, Blakeney J, et al.. Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd∶glass amplifier[J]. Applied Optics, 2010, 49(9): 1676-1681.

[2] Lozhkarev V V, Freidman G I, Ginzburg V N, et al.. Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals[J]. Laser Physics Letters, 2007, 4(6): 421-427.

[3] Chekhlov O V, Collier J L, Ross I N, et al.. 35 J broadband femtosecond optical parametric chirped pulse amplification system[J]. Optics Letters, 2006, 31(24): 3665-3667.

[4] Exawatt center for extreme light studies (XCELS)[R]. Russia: The Institute of Applied Physics RAS, 2011.

[5] The ELI-Nuclear Physics Working Groups. Extreme light infrastructure preparatory phase final report[R]. Romania: Extreme Light Infrastructure, 2011.

[6] The ELI-Nuclear Physics Working Groups. The white book of ELI nuclear physics[R]. Romania: Extreme Light Infrastructure, 2007.

[7] Hernandez-Gomez C, Collier J L, Canny D, et al.. The Vulcan 10 PW OPCPA project[R]. London: Central Laser Facility, 2006.

[8] Cheriaux G, Giambruno F, Fréneaux A, et al.. Apollon-10P: Status and implementation[C]. Light at Extreme Intensities, Szeged, 2012, 1462: 78-83.

[9] Dubietis A, Jonusauskas G, Piskarskas A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal[J]. Optics Communications, 1992, 88(4): 437-440.

[10] Ross I N, Matousek P, Towrie M, et al.. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers[J]. Optics Communications, 1997, 144(1): 125-133.

[11] 孙美智, 康俊, 张艳丽, 等. 不同含氘量DKDP晶体参量匹配与放大啁啾脉冲压缩特性分析[J]. 光学学报, 2015, 35(12): 1219002.

    Sun Meizhi, Kang Jun, Zhang Yanli, et al.. Analysis on phase matching and compression of amplified chirped pulse for various deuteration level DKDP crystals[J]. Acta Optica Sinica, 2015, 35(12): 1219002.

[12] 闫威, 张军伟, 吴文龙, 等. 光参量放大晶体拼接机构设计及拼接误差补偿[J]. 中国激光, 2014, 41(7): 0716001.

    Yan Wei, Zhang Junwei, Wu Wenlong, et al.. Design of optical parametric amplification crystal tiling structure and its tiling error compensation[J]. Chinese J Lasers, 2014, 41(7): 0716001.

[13] 张军伟, 闫威, 林东晖, 等. 光参量放大拼接晶体加工误差补偿系统设计[J]. 中国激光, 2015, 42(1): 0116003.

    Zhang Junwei, Yan Wei, Lin Donghui, et al.. Machining error compensation system design of optical parametric amplification crystals tiling[J]. Chinese J Lasers, 2015, 42(1): 0116003.

[14] Kleinman D A. Theory of optical parametric noise[J]. Physical Review, 1968, 174(3): 1027-1041.

[15] Ross I N, New G H C, Bates P K. Contrast limitation due to pump noise in an optical parametric chirped pulse amplification system[J]. Optics Communications, 2007, 273(1): 510-514.

[16] Dorrer C. Analysis of pump-induced temporal contrast degradation in optical parametric chirped-pulse amplification[J]. Journal of the Optical Society of America B, 2007, 24(12): 3048-3057.

[17] Wang J, Yuan P, Ma J, et al.. Surface-reflection-initiated pulse-contrast degradation in an optical parametric chirped-pulse amplifier[J]. Optics Express, 2013, 21(13): 15580-15594.

[18] Wang B P, Zou X B, Feng J. Quantum analysis of optical parametric fluorescence in the optical parametric amplification process[J]. Journal of Optics, 2015, 17(7): 075503.

[19] Homann C, Riedle E. Direct measurement of the effective input noise power of an optical parametric amplifier[J]. Laser & Photonics Reviews, 2013, 7(4): 580-588.

[20] Dorrer C, Begishev I A, Okishev A V, et al.. High-contrast optical-parametric amplifier as a front end of high-power laser systems[J]. Optics Letters, 2007, 32(15): 2143-2145.

[21] 卢宗贵, 刘红军, 景峰, 等 . 基于自发参量下转换产生参量荧光的光谱分布特性理论分析[J]. 物理学报, 2009, 58(7): 4689-4696.

    Lu Zonggui, Liu Hongjun, Jing Feng, et al.. Theoretical analysis of spectral properties of parametric fluorescence via spontaneous parametric down-conversion[J]. Acta Physica Sinica, 2009, 58(7): 4689-4696.

[22] Tavella F, Marcinkevicius A, Krausz F. Investigation of the superfluorescence generation in a multiterawatt optical parametric chirped pulse amplifier system[J]. New Journal of Physics, 2006, 8(10): 219.

[23] Manzoni C, Moses J, Krtner F X, et al.. Excess quantum noise in optical parametric chirped-pulse amplification[J]. Optics Express, 2011, 19(9): 8357-8366.

[24] Moses J, Manzoni C, Krtner F X, et al.. Temporal optimization of ultrabroadband high-energy OPCPA[J]. Optics Express, 2009, 17(7): 5540-5555.

[25] Wang J, Ma J G, Wang Y Z, et al.. Noise filtering in parametric amplification by dressing the seed beam with spatial chirp[J]. Optics Letters, 2014, 39(8): 2439-2442.

王波鹏, 粟敬钦, 曾小明, 周凯南, 王晓东, 左言磊, 王逍, 郭仪, 朱启华, 景峰. 不同抽运波形条件下参量荧光对信噪比的影响[J]. 光学学报, 2016, 36(6): 0614005. Wang Bopeng, Su Jingqin, Zeng Xiaoming, Zhou Kainan, Wang Xiaodong, Zuo Yanlei, Wang Xiao, Guo Yi, Zhu Qihua, Jing Feng. Impact of Optical Parametric Fluorescence on Temporal Contrast for Various Pump Profiles[J]. Acta Optica Sinica, 2016, 36(6): 0614005.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!