激光与光电子学进展, 2019, 56 (20): 202405, 网络出版: 2019-10-22   

等离激元光热效应的新应用:太阳能蒸气产生 下载: 1862次特邀综述

Application of Plasmon Photothermal Effect in Solar Vapor Generation
作者单位
南京大学现代工程与应用科学学院智能光传感与调控教育部重点实验室, 江苏 南京 210093
引用该论文

梁洁, 刘鑫, 周林. 等离激元光热效应的新应用:太阳能蒸气产生[J]. 激光与光电子学进展, 2019, 56(20): 202405.

Jie Liang, Xin Liu, Lin Zhou. Application of Plasmon Photothermal Effect in Solar Vapor Generation[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202405.

参考文献

[1] Wood W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. Proceedings of the Physical Society of London, 1902, 18(1): 269-275.

[2] Fano U. Some theoretical considerations on anomalous diffraction gratings[J]. Physical Review, 1936, 50(6): 573.

[3] Fano U. On the anomalous diffraction gratings. II[J]. Physical Review, 1937, 51(4): 288.

[4] Ferrell R A. Predicted radiation of plasma oscillations in metal films[J]. Physical Review, 1958, 111(5): 1214-1222.

[5] Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotechnology, 2015, 10(1): 25-34.

[6] Lalisse A, Tessier G, Plain J, et al. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion[J]. The Journal of Physical Chemistry C, 2015, 119(45): 25518-25528.

[7] Chen H J, Shao L, Li Q, et al. Gold nanorods and their plasmonic properties[J]. Chemical Society Reviews, 2013, 42(7): 2679-2724.

[8] Jiang N N, Zhuo X L, Wang J F. Active plasmonics: principles, structures, and applications[J]. Chemical Reviews, 2018, 118(6): 3054-3099.

[9] Lovera A, Gallinet B, Nordlander P, et al. Mechanisms of Fano resonances in coupled plasmonic systems[J]. ACS Nano, 2013, 7(5): 4527-4536.

[10] Lu X M, Rycenga M, Skrabalak S E, et al. Chemical synthesis of novel plasmonic nanoparticles[J]. Annual Review of Physical Chemistry, 2009, 60: 167-192.

[11] Hedayati M K, Faupel F, Elbahri M. Tunable broadband plasmonic perfect absorber at visible frequency[J]. Applied Physics A, 2012, 109(4): 769-773.

[12] Adleman J R, Boyd D A, Goodwin D G, et al. Heterogenous catalysis mediated by plasmon heating[J]. Nano Letters, 2009, 9(12): 4417-4423.

[13] Gao M M. Connor P K N, Ho G W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination[J]. Energy & Environmental Science, 2016, 9(10): 3151-3160.

[14] Zhu L L, Gao M M. Peh C K N, et al. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications[J]. Materials Horizons, 2018, 5(3): 323-343.

[15] Long R, Li Y, Song L, et al. Coupling solar energy into reactions: materials design for surface plasmon-mediated catalysis[J]. Small, 2015, 11(32): 3873-3889.

[16] Naldoni A, Guler U, Wang Z X, et al. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride[J]. Advanced Optical Materials, 2017, 5(15): 1601031.

[17] Challener W A, Peng C B, Itagi A V, et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer[J]. Nature Photonics, 2009, 3(4): 220-224.

[18] Kryder M H, Gage E C. McDaniel T W, et al. Heat assisted magnetic recording[J]. Proceedings of the IEEE, 2008, 96(11): 1810-1835.

[19] Boyd D A, Greengard L, Brongersma M, et al. Plasmon-assisted chemical vapor deposition[J]. Nano Letters, 2006, 6(11): 2592-2597.

[20] Ahn W, Boriskina S V, Hong Y, et al. Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices[J]. Nano Letters, 2012, 12(1): 219-227.

[21] Garnett E C, Cai W S, Cha J J, et al. Self-limited plasmonic welding of silver nanowire junctions[J]. Nature Materials, 2012, 11(3): 241-249.

[22] Chen C L, Zhou L, Yu J Y, et al. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection[J]. Nano Energy, 2018, 51: 451-456.

[23] Wang X Z, He Y R, Liu X, et al. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes[J]. Applied Energy, 2017, 195: 414-425.

[24] Hua Z T, Li B, Li L L, et al. Designing a novel photothermal material of hierarchical microstructured copper phosphate for solar evaporation enhancement[J]. The Journal of Physical Chemistry C, 2017, 121(1): 60-69.

[25] Neumann O, Urban A S, Day J, et al. Solar vapor generation enabled by nanoparticles[J]. ACS Nano, 2013, 7(1): 42-49.

[26] Huang X H, Jain P K. El-Sayed I H, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles[J]. Lasers in Medical Science, 2008, 23(3): 217-228.

[27] Abadeer N S, Murphy C J. Recent progress in cancer thermal therapy using gold nanoparticles[J]. The Journal of Physical Chemistry C, 2016, 120(9): 4691-4716.

[28] Zhu X J, Feng W, Chang J, et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature[J]. Nature Communications, 2016, 7: 10437.

[29] Neumann O, Feronti C, Neumann A D, et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles[J]. Proceedings of the National Academy of Sciences, 2013, 110(29): 11677-11681.

[30] Maier[\s]{1}SA.[\s]{1}Plasmonics:[\s]{1}fundamentals[\s]{1}and[\s]{1}applications[M].[\s]{1}New[\s]{1}York,[\s]{1}NY:[\s]{1}Springer,[\s]{1}2007.[\s]{1}

[31] Mie G. Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions[J]. Annalen der Physik, 1908, 25(3): 377-445.

[32] 刘海舟, 喻小强, 李金磊, 等. 基于等离激元微纳结构的太阳能界面光蒸汽转换[J]. 中国科学: 物理学力学天文学, 2019, 49(12): 124203.

    Liu H Z, Yu X Q, Li J L, et al. Plasmonic nanostructures for advanced interfacial solar vapor generation[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2019, 49(12): 124203.

[33] Chen M J, He Y R. Plasmonic nanostructures for broadband solar absorption based on the intrinsic absorption of metals[J]. Solar Energy Materials and Solar Cells, 2018, 188: 156-163.

[34] Link S. El-Sayed M A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods[J]. The Journal of Physical Chemistry B, 1999, 103(40): 8410-8426.

[35] 赖淑妹, 黄志伟, 王仰江, 等. Ag纳米结构局域表面等离激元共振模拟与分析[J]. 激光与光电子学进展, 2018, 55(12): 122601.

    Lai S M, Huang Z W, Wang Y J, et al. Simulation and analysis of local surface plasmon resonance of Ag nanostructures[J]. Laser & Optoelectronics Progress, 2018, 55(12): 122601.

[36] Hentschel M, Saliba M, Vogelgesang R, et al. Transition from isolated to collective modes in plasmonic oligomers[J]. Nano Letters, 2010, 10(7): 2721-2726.

[37] Sun Z H, Ni W H, Yang Z, et al. pH-controlled reversible assembly and disassembly of gold nanorods[J]. Small, 2008, 4(9): 1287-1292.

[38] Zhu J, Li J J, Zhao J W. The effect of dielectric coating on the local electric field enhancement of Au-Ag core-shell nanoparticles[J]. Plasmonics, 2015, 10(1): 1-8.

[39] Oldenburg S J, Averitt R D, Westcott S L, et al. Nanoengineering of optical resonances[J]. Chemical Physics Letters, 1998, 288(2/3/4): 243-247.

[40] Wang Y, Plummer E W, Kempa K. Foundations of plasmonics[J]. Advances in Physics, 2011, 60(5): 799-898.

[41] Liang J, Liu H Z, Yu J Y, et al. Plasmon-enhanced solar vapor generation[J]. Nanophotonics, 2019, 8(5): 771-786.

[42] Langmuir I. Oscillations in ionized gases[J]. Proceedings of the National Academy of Sciences, 1928, 14(8): 627-637.

[43] Brewer S H, Franzen S. Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy[J]. The Journal of Physical Chemistry B, 2002, 106(50): 12986-12992.

[44] Kreibig U. Fragstein C v. The limitation of electron mean free path in small silver particles[J]. Zeitschrift für Physik, 1969, 224(4): 307-323.

[45] Wiley B J, Im S H, Li Z Y, et al. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis[J]. The Journal of Physical Chemistry B, 2006, 110(32): 15666-15675.

[46] Bae K, Kang G M, Cho S K, et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation[J]. Nature Communications, 2015, 6: 10103.

[47] Aubry A, Lei D Y. Fernández-Domínguez A I, et al. Plasmonic light-harvesting devices over the whole visible spectrum[J]. Nano Letters, 2010, 10(7): 2574-2579.

[48] Govorov A O, Richardson H H. Generating heat with metal nanoparticles[J]. Nano Today, 2007, 2(1): 30-38.

[49] Richardson H H, Hickman Z N, Govorov A O, et al. Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting[J]. Nano Letters, 2006, 6(4): 783-788.

[50] Boriskina S V, Ghasemi H, Chen G. Plasmonic materials for energy: from physics to applications[J]. Materials Today, 2013, 16(10): 375-386.

[51] Bernardi M, Mustafa J, Neaton J B, et al. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals[J]. Nature Communications, 2015, 6: 7044.

[52] Boriskina S V, Cooper T A, Zeng L P, et al. Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities[J]. Advances in Optics and Photonics, 2017, 9(4): 775-827.

[53] 单杭永, 祖帅, 方哲宇. 表面等离激元热电子超快动力学研究进展[J]. 激光与光电子学进展, 2017, 54(3): 030002.

    Shan H Y, Zu S, Fang Z Y. Research progress in ultrafast dynamics of plasmonic hot electrons[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030002.

[54] Govorov A O, Zhang W, Skeini T, et al. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances[J]. Nanoscale Research Letters, 2006, 1(1): 84-90.

[55] Baffou G, Quidant R, Girard C. Heat generation in plasmonic nanostructures: influence of morphology[J]. Applied Physics Letters, 2009, 94(15): 153109.

[56] Baffou G, Girard C, Quidant R. Mapping heat origin in plasmonic structures[J]. Physical Review Letters, 2010, 104(13): 136805.

[57] Fang Z Y, Zhen Y R, Neumann O, et al. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle[J]. Nano Letters, 2013, 13(4): 1736-1742.

[58] Polman A. Solar steam nanobubbles[J]. ACS Nano, 2013, 7(1): 15-18.

[59] Swartz E T, Pohl R O. Thermal boundary resistance[J]. Reviews of Modern Physics, 1989, 61(3): 605-668.

[60] Zhou L, Li X Q, Ni G W, et al. The revival of thermal utilization from the sun: interfacial solar vapor generation[J]. National Science Review, 2019, 6(3): 562-578.

[61] Knight M W, King N S, Liu L F, et al. Aluminum for plasmonics[J]. ACS Nano, 2014, 8(1): 834-840.

[62] Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nature Communications, 2011, 2: 517.

[63] Søndergaard T, Novikov S M, Holmgaard T, et al. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves[J]. Nature Communications, 2012, 3: 969.

[64] Li W, Guler U, Kinsey N, et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber[J]. Advanced Materials, 2014, 26(47): 7959-7965.

[65] Kats M A, Sharma D, Lin J, et al. Ultra-thin perfect absorber employing a tunable phase change material[J]. Applied Physics Letters, 2012, 101(22): 221101.

[66] Zielinski M S, Choi J W, La Grange T, et al. Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation[J]. Nano Letters, 2016, 16(4): 2159-2167.

[67] Zhou L, Tan Y L, Ji D X, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2016, 2(4): e1501227.

[68] Ma C R, Yan J H, Huang Y C, et al. 4(8): eaas9894[J]. efficient photothermal conversion. Science Advances, 2018.

[69] Zhou L, Tan Y L, Wang J Y, et al. 3D self-assembly of aluminum nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 2016, 10(6): 393-398.

[70] Zhu M W, Li Y J, Chen F J, et al. Plasmonic wood for high-efficiency solar steam generation[J]. Advanced Energy Materials, 2018, 8(4): 1701028.

[71] Hogan N J, Urban A S, Ayala-Orozco C, et al. Nanoparticles heat through light localization[J]. Nano Letters, 2014, 14(8): 4640-4645.

[72] 魏天骐, 李秀强, 李金磊, 等. 界面光蒸汽转化研究进展[J]. 科学通报, 2018, 63(14): 1405-1416, 1404.

    Wei T Q, Li X Q, Li J L, et al. Interfacial solar vapor generation[J]. Chinese Science Bulletin, 2018, 63(14): 1405-1416, 1404.

[73] Li X Q, Min X Z, Li J L, et al. Storage and recycling of interfacial solar steam enthalpy[J]. Joule, 2018, 2(11): 2477-2484.

[74] Chen R, Wu Z J, Zhang T Q, et al. Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating[J]. RSC Advances, 2017, 7(32): 19849-19855.

[75] Yao J D, Zheng Z Q, Yang G W. Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation[J]. Nanoscale, 2018, 10(6): 2876-2886.

[76] Jiang Q S, Tian L M, Liu K K, et al. Bilayered biofoam for highly efficient solar steam generation[J]. Advanced Materials, 2016, 28(42): 9400-9407.

[77] Liu Y, Lou J W, Ni M T, et al. Bioinspired bifunctional membrane for efficient clean water generation[J]. ACS Applied Materials & Interfaces, 2016, 8(1): 772-779.

[78] Wang Z H, Liu Y M, Tao P, et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface[J]. Small (Weinheim an Der Bergstrasse, Germany), 2014, 10(16): 3234-3239.

[79] Fang J, Liu Q L, Zhang W, et al. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation[J]. Journal of Materials Chemistry A, 2017, 5(34): 17817-17821.

[80] Liu Y M, Yu S T, Feng R, et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation[J]. Advanced Materials, 2015, 27(17): 2768-2774.

[81] Wang P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight[J]. Environmental Science: Nano, 2018, 5(2): 1078-1089.

[82] Hu X Z, Xu W C, Zhou L, et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J]. Advanced Materials, 2017, 29(5): 1604031.

[83] Xu N, Hu X Z, Xu W C, et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials, 2017, 29(28): 1606762.

[84] Li X Q, Li J L, Lu J Y, et al. Enhancement of interfacial solar vapor generation by environmental energy[J]. Joule, 2018, 2(7): 1331-1338.

[85] Li X Q, Lin R X, Ni G, et al. Three-dimensional artificial transpiration for efficient solar waste-water treatment[J]. National Science Review, 2018, 5(1): 70-77.

[86] Li J L, Du M H, Lü G, et al. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization[J]. Advanced Materials, 2018, 30(49): 1805159.

梁洁, 刘鑫, 周林. 等离激元光热效应的新应用:太阳能蒸气产生[J]. 激光与光电子学进展, 2019, 56(20): 202405. Jie Liang, Xin Liu, Lin Zhou. Application of Plasmon Photothermal Effect in Solar Vapor Generation[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202405.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!