Matter and Radiation at Extremes, 2020, 5 (3): 038101, Published Online: Nov. 25, 2020   

Everything you always wanted to know about metallic hydrogen but were afraid to ask Download: 533次

Author Affiliations
1 Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
2 Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
3 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Copy Citation Text

Eugene Gregoryanz, Cheng Ji, Philip Dalladay-Simpson, Bing Li, Ross T. Howie, Ho-Kwang Mao. Everything you always wanted to know about metallic hydrogen but were afraid to ask[J]. Matter and Radiation at Extremes, 2020, 5(3): 038101.

References

[1] V. L. Ginzburg. What problems of physics and astrophysics seem now to be especially important and interesting (thirty years later, already on the verge of XXI century). Phys. - Usp., 1999, 42: 353.

[2] K. B. Davis, et al.. Bose-einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 1995, 75: 3969.

[3] G. Aad, et al.. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 2012, 716: 1.

[4] B. P. Abbot, et al.. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 2016, 116: 061102.

[5] M. Somayazulu, et al.. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 2019, 122: 027001.

[6] T. Guillot. The interiors of giant planets: Models and outstanding questions. Ann. Rev. Earth Planet. Sci., 2005, 33: 493.

[7] V. L. Ginzburg. Nobel Lecture: On superconductivity and superfluidity (What I have and have not managed to do) as well as on the “physical minimum” at the beginning of the XXI century. Rev. Mod. Phys., 2004, 76: 981.

[8] H. B. Huntington, E. Wigner. On the possibility of a metallic modification of hydrogen. J. Chem. Phys., 1935, 3: 764.

[9] P. Dalladay-Simpson, et al.. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature, 2016, 529: 63.

[10] R. T. Howie, et al.. Mixed molecular and atomic phase of dense hydrogen. Phys. Rev. Lett., 2012, 108: 125501.

[11] R. T. Howie, et al.. Proton tunneling in phase IV of hydrogen and deuterium. Phys. Rev. B, 2012, 86: 214104.

[12] R. T. Howie, et al.. Raman spectroscopy of hot hydrogen above 200 GPa. Nat. Mat., 2015, 14: 495.

[13] X.-D.Liuet al., “High-pressure behavior of hydrogen and deuterium at low temperatures,” Phys. Rev. Lett.119, 065301 (2017);10.1103/physrevlett.119.065301X.-D.Liuet al., “High-pressure behavior of hydrogen and deuterium at low temperatures,” Phys. Rev. Lett.122, 199602 (2019).

[14] M. D. Knudson, et al.. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science, 2015, 348: 1455.

[15] P. M. Celliers, et al.. Insulator-metal transition in dense fluid deuterium. Science, 2018, 361: 677.

[16] E.Babaevet al., “A superconductor to superfluid phase transition in liquid metallic hydrogen,” Nature431, 666 (2004);10.1038/nature02910E.Babaevet al., “Observability of a projected new state of matter: A metallic superfluid,” Phys. Rev. Lett.95, 105301 (2005).

[17] J.van Kranendonk, Solid Hydrogen (Plenum Press, 1983).

[18] E.Housecroft and A. G.Sharpe, Inorganic Chemistry (Prentice-Hall, 2007).

[19] K. Inoue, H. Kanzaki, S. Suga. Fundamental absorption spectra of solid hydrogen. Solid St. Commun, 1979, 30: 627.

[20] P. M. Bell, H. K. Mao. Observations of hydrogen at room temperature (25 C) and high pressure (to 500 kilobars). Science, 1979, 203: 1004.

[21] P. Dalladay-Simpson, et al.. Band gap closure, incommensurability and molecular dissociation of dense chlorine. Nat. Commun., 2019, 10: 1134.

[22] M. I. Eremets, et al.. Semimetallic molecular hydrogen at pressure above 350 GPa. Nat. Phys., 2019, 15: 1246.

[23] I. F. Silvera, R. J. Wijngaarden. New low-temperature phase of molecular deuterium at ultrahigh pressure. Phys. Rev. Lett., 1981, 47: 39.

[24] I. Goncharenko, P. Loubeyre. Neutron and X-ray diffraction study of the broken symmetry phase transition in solid deuterium. Nature, 2005, 435: 1206.

[25] R. J. Hemley, H. K. Mao. Phase transition in solid molecular hydrogen at ultrahigh pressures. Phys. Rev. Lett., 1988, 61: 857.

[26] Y. Akahama, et al.. Evidence from x-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa. Phys. Rev. B, 2010, 82: 060101(R).

[27] C. Ji, et al.. Ultrahigh-pressure isostructural electronic transitions in hydrogen. Nature, 2019, 573: 558.

[28] M. Hanfland, et al.. Novel infrared vibron absorption in solid hydrogen at megabar pressures. Phys. Rev. Lett., 1993, 70: 3760.

[29] R. J. Hemley, H.-k. Mao. Ultrahigh-pressure transitions in solid hydrogen. Rev. Mod. Phys., 1994, 66: 671.

[30] P. Loubeyre, et al.. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen. Nature, 2002, 416: 613.

[31] Y. Akahama, et al.. Raman scattering and x-ray diffraction experiments for phase III of solid hydrogen. J. Phys.: Conf. Ser., 2010, 215: 012056.

[32] B. J. Baer, et al.. Coherent anti-Stokes Raman spectroscopy of highly compressed solid deuterium at 300 K: Evidence for a new phase and implications for the band gap. Phys. Rev. Lett., 2007, 98: 235503.

[33] M. I. Eremets, I. A. Troyan. Conductive dense hydrogen. Nat. Mat., 2011, 10: 927.

[34] R. J. Needs, C. J. Pickard. Structure of phase III of solid hydrogen. Nat. Phys., 2007, 3: 473.

[35] A. A. Abrikosov. The equation of state of hydrogen at high pressures. Astron. Z., 1954, 31: 112.

[36] R. Kronig, et al.. On the internal constitution of the Earth. Physica, 1946, 12: 245.

[37] W. C. DeMarcus. The constitution of jupiter and saturn. Astron. J., 1958, 63: 2.

[38] N. W. Ashcroft. Metallic hydrogen: A high-temperature superconductor?. Phys. Rev. Lett., 1968, 21: 1748.

[39] I. Langmuir, G. M. J. Mackay. The dissociation of hydrogen into atoms. Part I. Experimental. J. Am. Chem. Soc., 1914, 36: 1708.

[40] I. Langmuir. The dissociation of hydrogen into atoms. Part II. Calculation of the degree of dissociation and the heat of formation. J. Am. Chem. Soc., 1915, 37: 417.

[41] S. K. Sharma, et al.. Raman measurements of hydrogen in the pressure range 0.2–630 kbar at room temperature. Phys. Rev. Lett., 1980, 44: 886.

[42] R. J. Hemley, H.-k. Mao. Optical studies of hydrogen above 200 Gigapascals: Evidence for metallization by band overlap. Science, 1989, 244: 1462.

[43] H. E. Lorenzana, et al.. Orientational phase transitions in hydrogen at megabar pressures. Phys. Rev. Lett., 1990, 64: 1939.

[44] R. T. Howie, et al.. Hydrogen (deuterium) vibron frequency as a pressure comparison gauge at multi-Mbar pressures. J. Appl. Phys., 2013, 114: 073505.

[45] B. Monserrat, et al.. Structure and metallicity of phase V of hydrogen. Phys. Rev. Lett., 2018, 120: 255701.

[46] R. P. Dias, I. F. Silvera. Observation of the Wigner-Huntington transition to metallic hydrogen. Science, 2017, 355: 6326.

[47] X.-D. Liu, et al.. Comment on Observation of the Wigner-Huntington transition to metallic hydrogen. Science, 2017, 357: eaan2286.

[48] A. F. Goncharov, V. V. Struzhkin. Comment on Observation of the Wigner-Huntington transition to metallic hydrogen. Science, 2017, 357: eaam9736.

[49] P.Loubeyreet al., “Comment on: Observation of the Wigner-Huntington transition to metallic hydrogen,” (2017).

[50] M. I.Eremets and A. P.Drozdov, “Comment on: Observation of the Wigner-Huntington transition to metallic hydrogen,” .

[51] H. Y. Geng. Public debate on metallic hydrogen to boost high pressure research. Matter Radiat. Extremes, 2017, 2: 275.

[52] R. P. Dias, et al.. Quantum phase transition in solid hydrogen at high pressure. Phys. Rev. B, 2019, 100: 184112.

[53] R. P. Dias, I. F. Silvera. Erratum for the research article “Observation of the Wigner-Huntington transition to metallic hydrogen”. Science, 2017, 357: eaao5843.

[54] P.Loubeyre, F.Ocelli, and P.Dumas, “Observation of a first order phase transition to metal hydrogen near 425 GPa,” .

[55] P. Dumas, P. Loubeyre, F. Occelli. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature, 2020, 577: 631.

Eugene Gregoryanz, Cheng Ji, Philip Dalladay-Simpson, Bing Li, Ross T. Howie, Ho-Kwang Mao. Everything you always wanted to know about metallic hydrogen but were afraid to ask[J]. Matter and Radiation at Extremes, 2020, 5(3): 038101.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!