应用光学, 2019, 40 (2): 334, 网络出版: 2019-03-26   

四通道微光偏振实时成像光学系统设计

Optical system design of four-channel low light level polarization imaging
作者单位
1 西安工业大学 光电工程学院, 陕西 西安710021
2 微光夜视技术重点实验室, 陕西 西安 710065
摘要
为了提高微光成像质量, 实现针对动态目标或变化场景的实时性成像的需求, 基于偏振成像原理, 并结合孔径分割技术设计了微光偏振实时成像光学系统。光学系统采用共口径四通道阵列结构, 将4个待测偏振态分成4个独立的成像通道, 通过子孔径成像镜组对探测器靶面进行四象限分割成像, 每个偏振通道通过放置起偏状态不同的偏振片获取目标不同偏振态的强度图像, 从而实现实时偏振成像。光学系统的设计焦距为100 mm、系统整体F数为1.2、工作波长范围为0.4 μm~0.85 μm、最低工作照度为1×10-3 lx、可输出1 080 pixel全高清图像。系统光学总长为167.5 mm, 单通道镜头的MTF值在40 lp/mm处全视场均高于0.57。
Abstract
In order to improve the quality of low-light-level(LLL) imaging and achieve the requirement for real-time imaging for dynamic targets or changing scenes, a LLL polarization real-time imaging optical system was designed based on the polarization imaging principle and the division of aperture technique. To achieve simultaneously polarization imaging, the optical system uses an array of common-caliber four-channel configuration. This structure divides four polarization states to be measured into four independent imaging channels, and four-quadrant segmentation imaging is performed on the target surface of the detector through a sub-aperture imaging group set. Each polarized channel obtains an intensity image with different polarization states by placing polarizing plates with different polarization states. The focal length of the optical system is 100 mm, the system whole F number is 1.2, the operating wavelength is 0.4 μm~0.85 μm, the minimum working illumination is 1×10-3 lx, and the 1 080 pixel full high-definition (HD image) can be outputted. The total optical length of the system is 167.5 mm, and the modulation transfer function (MTF) value of the single-channel is higher than 0.57 at 40 lp/mm in full field of view.
参考文献

[1] TAYLOR M J. A wide field, low light level TV system to measure the state of polarisation of light[J]. Journal of Physics E Scientific Instruments, 1981, 14(7): 865.

[2] MOULTRIE S, ROCHE M, LOMPADO A, et al. Design of a dual use imager incorporating polarimetric capabilities[J]. SPIE : The International Society for Optical Engineering, 2007, 6682: 66820B-1-10.

[3] FENG B, SHI Z L, LIU H Z, et al. Calibration method for equivalent extinction ratio of polarized pixel in integrated micropolarizer array camera[J]. SPIE, 2017, 10605: 106051B.

[4] LENIN A S, TYO J S. Design of channeled partial Mueller matrix polarimeters[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2016, 33(6): 1060.

[5] TYO J S. Hybrid division of aperture/division of a focal-plane polarimeter for real-time polarization imagery without an instantaneous field-of-view error[J]. Optics Letters, 2006, 31(20): 2984-2989.

[6] 茹志兵, 刘冰, 李双全,等. 基于微光像增强器的偏振成像系统设计与实验[J]. 应用光学, 2015, 36(3): 435-441.

    RU Zhibing, LIU Bing, LI Shuangquan, et al. Design and experiment for polarization imaging system of low-light-level image intensifier[J].Journal of Applied Optics, 2015, 36(3): 435-441.

[7] 贺虎成, 季轶群, 周建康,等. 偏心分孔径偏振成像光学系统的设计[J]. 光学学报, 2013, 33(6): 279-284.

    HE Hucheng, JI Yiqun, ZHOU Jiankang, et al. Optical design of decentered aperture-divided polarization imaging system[J].Acta Optica Sinica, 2013, 33(6): 279-284.

[8] 陈振跃, 王霞, 马斌,等. 微光偏振成像系统设计及实验[J]. 光子学报, 2014, 43(4): 411003-04.

    CHEN Zhenyue, WANG Xia, MA Bin, et al. Low light level polarization imaging system design and experiment[J]. Acta Photonica Sinica, 2014, 43(4): 411003-04.

[9] TYO J S, GOLDSTEIN D L, CHENAULT D B, et al. Review of passive imaging polarimetry for remote sensing applications.[J]. Applied Optics, 2015, 45(22): 5453-5469.

[10] 谭欣明. 关于微光物镜T数系列数值的确定[J]. 云光技术, 1998, 30(5): 7-13.

    TAN Xinming. About T parameter confirm ation of lens in low-light level night vision device[J]. Journal of Yunnan Optics, 1998, 30(5) : 7-13.

[11] 刘宇. 微光成像探测优化理论与高性能系统技术研究[D]. 南京: 南京理工大学, 2009.

    LIU Yu. Research on low-light-level imaging detection optimization theory and high performance system [D]. Nanjing: Nanjing University of Science & Technology, 2009.

[12] 高明, 王川, 刘钧,等. 四通道阵列偏振成像自适应光学系统设计[J]. 激光与红外, 2016, 46(6): 731-736.

    GAO Ming,WANG Chuan,LIU Jun, et al. Design of four-channel array polarized imaging adaptive optical system[J]. Laser & Infrared,2016, 46(6): 731-736.

[13] ALENIN A S, VAUGHN I J, SCOTT T J. Optimal bandwidth micropolarizer arrays[J]. Optics Letters, 2017, 42(3): 458.

[14] 王春艳, 姜会林, 王陆,等. 用于火控动态性能测试的多光轴光学系统[J]. 兵工学报, 2011, 32(6): 746-751.

    WANG Chunyan, JIANG Huilin, WANG Lu, et al. The multi-axial optical system study for fire control dynamic performance testing[J]. Acta Armamentarii, 2011, 32(6): 746-751.

[15] 黄诗喆, 田继文, 薛庆增.红外偏振成像系统光学设计[J].应用光学, 2018,39(3): 316-320.

    HUANG Shizhe, TIAN Jiwen, XUE Qingzeng. Optical design of infrared polarization imaging system[J]. Journal of Applied Optics, 2018,39(3): 316-320.

贾春辉, 高明, 杨书宁. 四通道微光偏振实时成像光学系统设计[J]. 应用光学, 2019, 40(2): 334. JIA Chunhui, GAO Ming, YANG Shuning. Optical system design of four-channel low light level polarization imaging[J]. Journal of Applied Optics, 2019, 40(2): 334.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!