光学技术, 2017, 43 (5): 461, 网络出版: 2017-11-07  

Bragg光纤包层制作误差对导模特性的影响

Impact of fabrication error on mode property of Bragg fiber
作者单位
1 忻州师范学院电子系, 山西 忻州 034000
2 北京交通大学 光波技术研究所, 北京 100094
摘要
对Bragg光纤中包层制造误差对导模特性的影响进行了深入的分析和研究, 给出了一般N层波导中模式场标量波动方程求解的传输矩阵方法, 并将其应用在Bragg光纤模式场的分析当中。分别研究了Bragg包层存在折射率误差和厚度误差时对光纤基模模式场的有效折射率、模场半径和芯区功率占比的影响, 并利用统计的方法分析了不同制作误差时导模特性的相对变化。折射率误差在1‰的水平时, 基模有效折射率、模场半径和芯区功率占比的方差水平为1.55×10-4、1.04×10-1和1.79×10-2; 厚度误差在2%的水平时模式场参量的方差水平分别为3.61×10-5、1.84×10-2和2.35×10-3。
Abstract
The impact of fabrication error on mode properties of Bragg fiber is carried out. The transfer matrix method for solving scalar wave equation of the N-layers waveguide is given and applied to guided-mode analysis of the Bragg fiber. The impact of both refractive index error and thickness error on effective index of fundamental mode, mode field radius and power ratio of fiber core are investigated respectively. The dependence of mode properties on fabrication error level is studied in statistical approach. The variances of the effective index of fundamental mode, mode field radius and power ratio of fiber core are 1.55×10-4, 1.04×10-1 and 1.79×10-2 with 1‰ refractive index error, while the variances are 3.61×10-5, 1.84×10-2 and 2.35×10-3 with 2% thickness error.
参考文献

[1] 廖同庆, 等. 有限包层Bragg光纤模式的分类与特性研究[J]. 光学技术, 2014, 40( 2):167-171.

    LIAO Tongqing, et al. Classification and properties of modes in Bragg fibers with a finite number of H/L layers[J]. Optical Technique, 2014, 40(2):167-171.

[2] 刘道军. 无限包层Bragg光纤的传输模式研究[J]. 光学技术, 2016, 42(1): 65-69.

    LIU Daojun. Research on the transmission model of unlimited cladding Bragg fiber[J]. Optical Technique, 2016, 42(1):65-69.

[3] 任国斌, 等. 高折射率芯Bragg光纤的色散特性研究[J]. 物理学报, 2004, 53(6):1862-1867.

    REN Guobin, et al. Dispersion properties of high-index-core Bragg fibers[J]. Acta Physica Sinica. 2004, 53(6):1862-1867.

[4] 林晨曦. Bragg光纤带隙调控光传输特性与工艺制备[D]. 北京: 清华大学, 2007.

    LIN Chenxi. Characteristics of optical transmission with bandgap control in Bragg fiber and its fabrication[D]. Beijing: Tsinghua University, 2007.

[5] BURAK Temelkuran, et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J]. Nature, 2002, 420:650-653.

[6] KURIKI K, et al. Hollow multilayer photonic bandgap fibers for NIR applications[J]. Optical Express, 2004, 12:1510-1517.

[7] G. Vienne, et al. First demonstration of air-silica Bragg fiber[C]∥Optical Fiber Communication Conference (OFC), Los Angeles, U.S.,2004, PDP25.

[8] TAKASHI Katagiri, et al. Photonic bandgap fiber with a silica core and multilayer dielectric cladding[J]. Optics Letters, 2004, 29( 6):557-559.

[9] MA Lin, et al. Nanotaper optics with Bragg-fiber structure[J]. APOC, Proc. of SPIE, 2006: 6351, 63510Z.

[10] YOEL Fink, et al. Guiding optical light in air using an all-dielectric structure[J]. Journal of Lightwave Technology, 1999, 17(11):2039-2041.

[11] DANIEL J. Gibson, et al. Extrusion of hollow waveguide preforms with a one-dimensional photonic band gap structure[J]. Journal of Applied Physics, 2004, 95(8):3895-3900.

[12] 任国斌, 等. 高折射率芯Bragg光纤的模式特征[J]. 光电子激光, 2004, 15(5):565-568.

    REN Guobin, et al. Mode characteristics of high-index-core Bragg fibers[J]. Journal of Optoelectronics·Laser, 2004, 15(5):565-568.

巩玲仙, 田竹梅, 王爱珍, 付建梅, 王春灿. Bragg光纤包层制作误差对导模特性的影响[J]. 光学技术, 2017, 43(5): 461. GONG Lingxian, TIAN Zhumei, WANG Aizhen, FU Jianmei, WANG Chuncan. Impact of fabrication error on mode property of Bragg fiber[J]. Optical Technique, 2017, 43(5): 461.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!