光学学报, 2013, 33 (1): 0105001, 网络出版: 2012-07-17   

双光栅切换微型平场全息凹面光栅光谱仪 下载: 649次

Double-Grating Minitype Flat-Field Holographic Concave Grating Spectrograph
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院苏州生物医学工程技术研究所, 江苏 苏州 215163
摘要
基于CCD的微型平场全息凹面光栅光谱仪,以其简单紧凑的结构和快速高效的工作方式在光谱分析领域获得了广泛的应用。但是,由于受限于色散距离,单纯依靠优化光栅像差很难进一步使光谱分辨率获得大幅提高。提出一种双光栅切换微型平场全息凹面光栅光谱仪的设计方法,用两个使用结构相同的光栅代替传统的单光栅设计,给出一个光谱范围为400~1000 nm光谱仪的具体设计,计算显示光谱分辨率最大可提高为原来的2.5倍。通过对光栅衍射效率的计算分析,说明此方法能够显著改善仪器的通光效率。设计制作了原理样机,进行了装调测试,实验结果与理论计算相吻合。
Abstract
The minitype flat-field holographic concave grating spectrograph equipped with CCD detectors are widely used for spectral analysis. They are accepted for some remarkable advantages, such as compact structure and rapid and efficient testing process. However, restricted by imaging distance of the spectrometer, it is difficult to improve the spectral resolution greatly just by optimization of the holographic concave grating. A design method of double-grating minitype flat-field holographic concave grating spectrograph is proposed. The single grating in conventional spectrograph is replaced by two gratings which are equipped with the same geometry. A double grating flat-field spectrograph with a wavelength range from 400 nm to 1000 nm is designed. The calculation results show that the resolution of the newly designed spectrograph can be almost two and a half times as great as the conventional spectrograph. The light throughput efficiency can also be greatly improved, which is demonstrated by analyzing diffraction efficiency of the grating. The double-grating minitype flat-field holographic concave grating spectrograph is developed and adjusted. The experimental results agree with the theoretical calculations very well.
参考文献

[1] 贾辉, 姚勇. 微小型光栅光谱仪光学系统的特点与光谱分辨率的提高[J]. 光谱学与光谱分析, 2007, 27(8): 1653~1656

    Jia Hui, Yao Yong. Characteristics of typical optical systems with diffractive gratings of micro-spectrometers and improvement of spectrometer′s resolution [J]. Spectroscopy & Spectral Analysis, 2007, 27(8): 1653~1656

[2] Chen Yuerui, Sun Bin, Han Tao et al.. Densely folded spectral images of the CCD spectrometer working in the full 200~1000 nm wavelength range with high resolution [J]. Opt. Express, 2005, 13(25): 10049~10054

[3] 刘冬梅, 夏日辉, 潘永刚 等. 基于电荷耦合器件的数字光谱分析仪的研究[J]. 光学学报, 2012, 32(1): 84~89

    Liu Dongmei, Xia Rihui, Pan Yonggang et al.. Study of digital spectrometer based on charge coupled device [J]. Acta Optica Sinica, 2012, 32(1): 84~89

[4] 崔剑, 董小鹏, 吴兆喜 等. 基于FBG实际反射谱匹配的FBG峰值波长偏移量的高精度确定方法[J]. 中国激光, 2011, 38(7): 152~156

    Cui Jian, Dong Xiaopeng, Wu Zhaoxi et al.. A high-precision method for determining the FBG peak wavelength shift based on FBG actual reflection spectrum match [J]. Chinese J. Lasers, 2011, 38(7): 152~156

[5] 常凌颖, 赵葆常, 杨建峰 等. 两线阵立体测绘CCD相机光学系统设计[J]. 中国激光, 2011, 38(8): 245~249

    Chang Lingying, Zhao Baochang, Yang Jianfeng et al.. Optical system design of a two-linear array stereoscopic mapping CCD camera [J]. Chinese J. Lasers, 2011, 38(8): 245~249

[6] 陈兴林, 郑燕红, 王岩. 光斑噪声对星间光通信的影响及抑制算法[J]. 中国激光, 2010, 37(3): 743~747

    Chen Xinglin, Zheng Yanhong, Wang Yan. Influence of spot noise in inter-satellite optical communications and suppression algorithm [J]. Chinese J. Lasers, 2010, 37(3): 743~747

[7] G. S. Hayat, J. Flamand, M. Lacroix et al.. Designing a new generation of analytical instruments around the new types of holographic diffraction grating [J]. Opt. Engng., 1975, 14: 420~425

[8] J. M. Lerner, R. J. Chambers, G. Passereau. Flat-field imaging spectroscopy using aberration corrected holographic gratings [C]. SPIE, 1981, 268: 122~128

[9] H. Noda, T. Namioka, M. Seya. Geometric theory of the grating [J]. J. Opt. Soc. Am., 1974, 64(8): 1031~1036

[10] T. Namioka, M. Koike, D. Content. Geometric theory of the ellipsoidal grating [J]. Appl. Opt., 1994, 33(31): 7261~7274

[11] S. Masui, T. Namioka. Geometric aberration theory of double-element optical systems [J]. J. Opt. Soc. Am. A, 1999, 16(9): 2253~2268

[12] N. K. Pavlycheva. Design of flat-field spectrograph employing a holographic grating [J]. Sov. J. Opt. Technol., 1979, 46(7): 394~396

[13] W. R. McKinney, C. Palmer. Numerical design method for aberration-reduced concave grating spectrometers [J]. Appl. Opt., 1987, 26(15): 3108~3118

[14] 李朝明, 吴建宏, 唐敏学. 平场全息凹面光栅的设计[J]. 激光杂志, 2005, 26(2): 57~58

    Li Chaoming, Wu Jianhong, Tang Minxue. Design of flat field holographic concave grating [J]. Laser Journal, 2005, 26(2): 57~58

[15] 向贤毅, 温志渝. 用于近红外光谱仪的平场全息凹面光栅的模拟与设计[J]. 光谱学与光谱分析, 2008, 28(7): 1670~1673

    Xiang Xianyi, Wen Zhiyu. Design of flat field holographic concave grating for near-infrared spectrophotometer [J]. Spectroscopy and Spectral Analysis, 2008, 28(7): 1670~1673

[16] 周倩, 李立峰. 光谱仪用平场凹面光栅的凸面母光栅的消像差设计思路 [J]. 光谱学与光谱分析, 2009, 29(8): 2281~2285

    Zhou Qian, Li Lifeng. Design method of convex master gratings for replicating flat-field concave gratings [J]. Spectroscopy and Spectral Analysis, 2009, 29(8): 2281~2285

[17] 孔鹏, 巴音贺希格, 李文昊 等. 双光栅平场全息凹面光栅光谱仪的优化设计[J]. 光学学报, 2011, 31(2): 29~33

    Kong Peng, Bayanheshig, Li Wenhao et al.. Optimization of double-grating flat-field holographic concave grating spectrograph [J]. Acta Optica Sinica, 2011, 31(2): 29~33

[18] M. Chrisp. Aberrations of holographic toroidal grating systems [J]. Appl. Opt., 1983, 22(10): 1508~1518

孔鹏, 唐玉国, 巴音贺希格, 齐向东, 李文昊, 崔锦江. 双光栅切换微型平场全息凹面光栅光谱仪[J]. 光学学报, 2013, 33(1): 0105001. Kong Peng, Tang Yuguo, Bayanheshig, Qi Xiangdong, Li Wenhao, Cui Jinjiang. Double-Grating Minitype Flat-Field Holographic Concave Grating Spectrograph[J]. Acta Optica Sinica, 2013, 33(1): 0105001.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!