强激光与粒子束, 2020, 32 (10): 102001, 网络出版: 2020-11-11  

水分子在氢化锂表面的吸附行为

Adsorption behavior of water molecules on the surface of lithium hydride
作者单位
1 西华师范大学 物理与空间科学学院,四川 南充 637001;中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
2 西华师范大学 物理与空间科学学院,四川 南充 637001
摘要
运用理论分析方法计算研究了水分子在氢化锂表面的吸附行为,分析了氢化锂表面改性对其疏水性能的影响。结果表明,在LiH-111面和LiH-100面上构建槽结构、柱状结构后,水分子在其上的吸附力比完整表面更强,说明表面微结构的引入的确改变了势能分布。壁相交处存在势能叠加,加强了吸附水分子的能力,但是没有引起表面的亲水性能变化。水分子可以稳定的吸附在完美的LiH(001)表面,其解离能垒仅为0.386 eV,这一解离反应在室温下完全可以进行。水分子极易在具有结构缺陷的LiH表面解离,这是LiH在一定湿度的空气和水环境中极易分解的根本原因。
Abstract
The theoretical analysis method is used to calculate the adsorption behavior of water molecules on the surface of lithium hydride, and analyze the influence of surface modification of lithium hydride on its hydrophobic performance. The results show that after constructing groove structure and columnar structure on LiH-111 surface and LiH-100 surface, the adsorption force to water molecules of the modified surface is stronger than that of the complete surface, indicating that the introduction of surface microstructure does change the potential energy distribution. There is a superposition of potential energy at the intersection of the walls, which strengthens the ability to adsorb water molecules, but does not cause changes in the hydrophilic properties of the surface. Water molecules can be stably adsorbed on the perfect LiH (001) surface, and its dissociation energy barrier is only 0.386 eV. This dissociation reaction can be carried out at room temperature. Water molecules are easily dissociated on the LiH surface with structural defects, which is the fundamental reason why LiH decomposes easily in a certain humidity air and water environment.

刘城, 雷洁红. 水分子在氢化锂表面的吸附行为[J]. 强激光与粒子束, 2020, 32(10): 102001. Cheng Liu, Jiehong Lei. Adsorption behavior of water molecules on the surface of lithium hydride[J]. High Power Laser and Particle Beams, 2020, 32(10): 102001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!