中国激光, 2016, 43 (10): 1010003, 网络出版: 2016-10-12   

基于分组测量和边沿滤波的大容量光纤光栅快速传感系统

Large Capacity and Fast FBG Sensing System Based on Marshalling Measurement and Edge Filter
作者单位
南京大学光通信工程研究中心, 江苏 南京 210093
摘要
应用分组测量和边沿滤波实现了大容量光纤布拉格光栅(FBG)快速传感系统的设计。在传统的时分复用光纤光栅传感系统中对传感光栅按位置进行分组,然后按组分别进行测量,避免了单次测量中探测器动态范围的限制,对其进行重复利用,延长了系统的测量距离;同时利用边沿滤波法实现了快速的波长解调,能够在一次测量中解调出该分组所有光栅的波长信号,大幅加快了系统的测量速度,有利于实现更高的扫描频率。实验结果表明,本系统在温度传感测试中获得了0.9913的解调线性度,误差在1.36 ℃以内。
Abstract
A fast fiber Bragg grating (FBG) sensing system with large capacity based on marshalling measurement and edge filter is designed. Sensing gratings in traditional time division multiplexing systems are grouped according to their positions on the fiber, and these grating groups are then successively measured. The limit of detector′s dynamic range in single measurement is avoided, the reutilization of sensing gratings is realized, and the measuring distance is extended. Meantime, by using edge filtering method, fast wavelength demodulation is achieved, and the wavelength signals of all gratings in one grating group is measured once, which can reduce measurement time and improve the scanning frequency of the system effectively. The result shows that a demodulation linearity of 0.9913 is realized in the temperature sensing test of the system and the error is less than 1.36 ℃.
参考文献

[1] Grobnic D, Mihailov S J, Smelser C W, et al. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications[J]. IEEE Photonics Technology Letters, 2004, 16(11): 2505-2507.

[2] Majumder M, Gangopadhyay T K, Chakraborty A K, et al. Fibre Bragg gratings in structural health monitoring: Present status and applications[J]. Sensors and Actuators A: Physical, 2008, 147(1): 150-164.

[3] 徐国权, 熊代余. 光纤光栅传感技术在工程中的应用[J]. 中国光学, 2013, 6(3): 306-317.

    Xu Guoquan, Xiong Daiyu. Applications of fiber Bragg grating sensing technology in engineering[J]. Chinese Optics, 2013, 6(3): 306-317.

[4] Guo T, Liu F, Liang X, et al. Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings[J]. Biosensors and Bioelectronics, 2016, 78: 221-228.

[5] 林钧岫, 王文华, 王小旭. 光纤光栅传感技术应用研究及其进展[J]. 大连理工大学学报, 2005, 44(6): 931-936.

    Lin Junxiu, Wang Wenhua, Wang Xiaoxu. Study of application and evolution of fiber grating sensors technique[J]. Journal of Dalian University of Technology, 2005, 44(6): 931-936.

[6] Wang Y, Gong J, Wang D Y, et al. A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2011, 23(2): 70-72.

[7] Weis R S, Kersey A D, Berkoff T A. Four-element fiber grating sensor array with phase-sensitive detection[C]. 1994 North American Conference on Smart Structures and Materials, 1994: 150-157.

[8] Chan C C, Jin W, Wang D N, et al. Intrinsic crosstalk analysis of a serial TDM FGB sensor array by using a tunable laser[J]. Microwave and Optical Technology Letters, 2003, 36(1): 2-4.

[9] Cooper D J F, Coroy T, Smith P W E. Time-division multiplexing of large serial fiber-optic Bragg grating sensor arrays[J]. Applied Optics, 2001, 40(16): 2643-2654.

[10] Dai Y, Liu Y, Leng J, et al. A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring[J]. Optics and Lasers in Engineering, 2009, 47(10): 1028-1033.

[11] Chung W H, Tam H Y, Wai P K A, et al. Time- and wavelength-division multiplexing of FBG sensors using a semiconductor optical amplifier in ring cavity configuration[J]. IEEE Photonics Technology Letters, 2005, 17(12): 2709-2711.

[12] Luo Z, Wen H, Li X, et al. Online reflectivity measurement of an ultra-weak fiber Bragg grating array[J]. Measurement Science and Technology, 2013, 24(10): 105102.

[13] Hu C, Wen H, Bai W. A novel interrogation system for large scale sensing network with identical ultra-weak fiber Bragg gratings[J]. Journal of Lightwave Technology, 2014, 32(7): 1406-1411.

[14] Luo Z, Wen H, Guo H, et al. A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings[J]. Optics Express, 2013, 21(19): 22799-22807.

[15] Wang Y, Gong J, Dong B, et al. A large serial time-division multiplexed fiber Bragg grating sensor network[J]. Journal of Lightwave Technology, 2012, 30(17): 2751-2756.

[16] Zhang M, Sun Q, Wang Z, et al. A large capacity sensing network with identical weak fiber Bragg gratings multiplexing[J]. Optics Communications, 2012, 285(13): 3082-3087.

[17] Xia L, Zhang Y, Zhu F, et al. The performance limit of Φ-OTDR sensing system enhanced with ultra-weak fiber Bragg grating array[C]. 2015 International Conference on Optical Instruments and Technology, 2015: 962003.

曹品奇, 许国良. 基于分组测量和边沿滤波的大容量光纤光栅快速传感系统[J]. 中国激光, 2016, 43(10): 1010003. Cao Pinqi, Xu Guoliang. Large Capacity and Fast FBG Sensing System Based on Marshalling Measurement and Edge Filter[J]. Chinese Journal of Lasers, 2016, 43(10): 1010003.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!