光学 精密工程, 2016, 24 (7): 1789, 网络出版: 2016-08-29   

改进的基于雾气理论的视频去雾

Improved video defogging based on fog theory
作者单位
1 湖南工学院 电气与信息工程学院, 湖南 衡阳 421002
2 武汉理工大学 光纤传感与信号处理教育部重点实验室, 湖北 武汉 430070
3 武汉理工大学 交通学院, 湖北 武汉 430070
摘要
为了进一步提高有雾视频的可用性, 提出了一种改进的基于雾气理论的视频去雾方法。该方法以雾气理论为基础, 利用暗原色先验知识以及Retinex方法和图像融合的方式, 将从视频背景图像求取的大气光值和介质传播图应用于视频的所有帧以便去除雾气。从主观定性评价、客观定量评价和运算速度3个方面对视频去雾效果进行了评价。结果表明, 对分辨率为480×640的视频, 本文方法的运算速度为5.45 frame/s, 不仅获得了较快的处理速度且能有效避免复原视频中出现颜色跳变的现象。由于本文采用区间估计的方式对大气光值进行估计, 同时利用图像复原和图像增强的方法求取介质传播图, 因此, 复原视频的清晰度和对比度比典型的视频去雾方法有所提高, 颜色效果也比较好。
Abstract
To improve the usability of a foggy video, an improved video defogging method based on fog theory was proposed. By using dark channel prior knowledge, Retinex method and image fusion, the method applies the values of global atmospheric light and a medium transmission map estimated from the video backgrfound image to defogging of all the video frames. The effects of the defogging for the video image were evaluated by three methods in subjective qualitative evaluation, objective quantitative evaluation and operation speeds. Experimental results demonstrate that the proposed method runs at 5.45 frame/s for a video image of 480×640, and it not only obtains a fast processing speed but also effectively avoids color jump during the process of restoring image. As the modified method uses the interval estimation to estimate the value of global atmospheric light, and combinates image restoration and image enhancement to obtain the value of medium transmission map, it improves the visibility and contrast of restored video image effectively as well as color effect as compared with the traditional video defogging methods.
参考文献

[1] 孙伟, 李大健, 刘宏娟, 等.基于大气散射模型的单幅图像快速去雾[J].光学 精密工程, 2013, 21(4): 1040-1046.

    SUN W, LI D J, LIU H J, et al.. Fast single image fog removal based on atmospheric scattering model[J]. Opt. Precision Eng., 2013, 21(4): 1040-1046.(in Chinese)

[2] MA Z L, WEN J, ZHANG C, et al.. An effective fusion defogging approach for single sea fog image[J]. Neurocomputing, 2016, 173(1): 1257-1267.

[3] CHOI L K, YOU J, BOVIK A C. Referenceless prediction of perceptual fog density and perceptual image defogging[J].IEEE Transactions on Image Processing, 2015, 24(11): 3888-3901.

[4] ZHU Q S, MAI J M, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J].IEEE Transactions on Image Processing, 2015, 24(11): 3522-3533.

[5] 肖创柏, 赵宏宇, 禹晶, 等. 基于WLS的雾天交通图像恢复方法[J].红外与激光工程, 2015, 44(3): 1080-1084.

    XIAO CH B, ZHAO H Y, YU J, et al.. Traffic image defogging method based on WLS[J]. Infrared and Laser Engineering, 2015, 44(3): 1080-1084.(in Chinese)

[6] 葛广一, 魏振忠. 图像去雾过程中的噪声抑制方法[J].红外与激光工程, 2014, 43(8): 2765-2771.

    GE G Y, WEI ZH ZH. Noise inhibition method during image dehazing process[J]. Infrared and Laser Engineering, 2014, 43(8): 2765-2771.(in Chinese)

[7] 郭璠, 蔡自兴, 谢斌.基于雾气理论的视频去雾算法[J].电子学报, 2011, 39(9): 2019-2025.

    GUO F, CAI Z X, XIE B. Video defogging algorithm based on fog theory[J].Acta Electronica Sinica, 2011, 39(9): 2019-2025.(in Chinese)

[8] CHEN G, ZHOU H Q, YAN J F. A novel method for moving object detection in foggy day[C].Proceedings of the 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing. Qingdao, China: IEEE Computer Society, 2007: 53-58.

[9] JONE J, WILSCY M. Enhancement of weather degraded video sequences using wavelet fusion[C].Proceedings of the 7th IEEE International Conference on Cybernetic Intelligent System, London, UK: IEEE Computer Society, 2008: 1-6.

[10] XU Z Y, LIU X M, CHEN X N. Fog removal from video sequences using contrast limited adaptive histogram equalization[C].Proceedings of International Conference on Computational Intelligence and Software Engineering, Wuhan, China: IEEE Computer Society, 2009: 1-4.

[11] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[C].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR), New York, USA: IEEE Computer Society, 2009: 1956-1963.

[12] LIU H B, YANG J, WU Z P, et al.. Fast single image dehazing based on image fusion[J]. Journal of Electronic Imaging, 2015, 24(1), 013020.

[13] MCCARTNEY E J.Optics of Atmosphere: Scattering by Molecules and Particles[M]. New York: John Wiley and Sons, 1976: 23-32.

[14] 罗会兰, 林家彪.一种基于多尺度Retinex算法的图像去雾方法[J].计算机应用与软件, 2013, 30(4): 58-60, 127.

    LUO H L, LIN J B. An image defogging method based on multi-scale Retinex[J].Computer Applications and Software, 2013, 30(4): 58-60, 127.(in Chinese)

[15] 刘海波, 汤群芳, 杨杰.改进直方图均衡和Retinex算法在灰度图像增强中的应用[J].量子电子学报, 2014, 31(5): 525-532.

    LIU H B, TANG Q F, YANG J. Application of improved histogram equalization and Retinex algorithm in gray image enhancement[J]. Chinese Journal of Quantum Electronics, 2014, 31(5): 525-532.(in Chinese)

[16] 张小刚, 唐美玲, 陈华, 等.一种结合双区域滤波和图像融合的单幅图像去雾算法[J].自动化学报, 2014, 40(8): 1733-1739.

    ZHANG X G, TANG M L, CHEN H, et al.. A dehazing method in single image based on double-area filter and image fusion[J]. Acta Automatica Sinica, 2014, 40(8): 1733-1739.(in Chinese)

[17] PARIS M, FREDO D. A fast approximation of the bilateral filter using a signal processing approach[C].Proceedings of the 9th European Conference on Computer Vision, Graz, GER: Springer, 2006: 568-580.

[18] 吴笑天, 鲁剑锋, 贺柏根, 等.雾天降质图像的快速复原[J].中国光学, 2013, 6(6): 892-899.

    WU X T, LU J F, HE B G, et al.. Fast restoration of haze-degraded image[J]. Chinese Optics, 2013, 6(6): 892-899.(in Chinese)

[19] DRAGO F, MYSZKOWSKI K, ANNEN T, et al.. Adaptive logarithmic mapping for displaying high contrast scenes[J]. Computer Graphics Forum, 2003, 22(3): 419-426.

[20] 范媛媛, 沈湘衡, 桑英军.基于对比度敏感度的无参考图像清晰度评价[J].光学 精密工程, 2011, 19(10): 2485-2493.

    FAN Y Y, SHEN X H, SANG Y J. No reference image sharpness assessment based on contrast sensitivity[J].Opt. Precision Eng., 2011, 19(10): 2485-2493.(in Chinese)

[21] HAUTIERE N, TAREL J P, AUBERT D, et al.. Blind contrast restoration assessment by gradient ratioing at visible edges[J]. Image Analysis and Stereology, 2008, 27(2): 87-95.

[22] JOBSON D J, RAHMAN Z, WOODELL G A. Statistics of visual representation[C]. Proceedings of the Visual Information Processing XI. Orlando, USA: SPIE, 2002: 25-35.

[23] 李菊霞, 余雪丽.雾天条件下的多尺度Retinex图像增强算法[J].计算机科学, 2013, 40(3): 299-301.

    LI J X, YU X L. Enhance algorithm for fog images based on improved multi-scale Retinex[J]. Computer Science, 2013, 40(3): 299-301.(in Chinese)

[24] SHIN D K, KIM Y M, PARK K T, et al.. Video dehazing without flicker artifacts using adaptive temporal average[C]. Proceedings of the International Symposium on Consumer Electronics 2014(ISCE 2014), Jeju, Korea, 2014: Article number 6884454.

[25] ZHANG J, LI L, ZHANG Y, YANG G, et al.. Video dehazing with spatial and temporal coherence[J]. Visual Computer, 2011, 27(6): 749-757.

[26] KIM J H, JANG W D, SIM J Y, et al.. Optimized contrast enhancement for real-time image and video dehazing[J]. Journal of Visual Communication and Image Representation, 2013, 24(3): 410-425.

刘海波, 杨杰, 吴正平, 张庆年, 邓勇. 改进的基于雾气理论的视频去雾[J]. 光学 精密工程, 2016, 24(7): 1789. LIU Hai-bo, YANG Jie, WU Zheng-ping, ZHANG Qing-nian, DENG Yong. Improved video defogging based on fog theory[J]. Optics and Precision Engineering, 2016, 24(7): 1789.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!