光学学报, 2007, 27 (7): 1316, 网络出版: 2007-08-17   

用遗传算法快速提取近红外光谱特征区域和特征波长

Methods of Characteristic Wavelength Region and Wavelength Selection Based on Genetic Algorithm
作者单位
1 江苏大学农产品加工研究所, 镇江 212013
2 江苏恒顺集团有限公司, 镇江 212004
摘要
提出了一种遗传区间偏最小二乘法(GA-iPLS),并用该方法快速提取苹果糖度近红外光谱的特征区域,在此基础上采用遗传偏最小二乘法(GA-PLS)提取苹果糖度近红外光谱的特征波长,进行苹果糖度预测。结果表明,整个光谱等分为40个子区间,遗传区间偏最小二乘法能快速寻找出5个特征子区间(第4,6,8,11,18号);在5个特征子区间的基础上用遗传偏最小二乘法继续优化,从中提取44个特征波长。建立在5个特征子区间和44个特征波长上的偏最小二乘法模型精度均优于全光谱偏最小二乘法模型,对预测集的预测相关系数提高了近10%;且模型得到了很大的简化,用于建模的主因子数减少了7个。这些结果表明,用这两种方法不但可以建立简洁、数据运算量少的模型,还可以快速地提取近红外光谱的特征区域和特征波长。
Abstract
Genetic algorithm interval partial least square (GA-iPLS) and genetic algorithm partial least square (GA-PLS) were proposed to select the characteristic wavelength region and characteristic wavelength of sugar content against apple near-infrared spectra for sugar content prediction. The apple near-infrared spectra data were divided into 40 intervals. Consequently, 5 subsets (No.4,6,8,11,18) and 362 data points were selected quickly by GA-iPLS, and 44 characteristic wavelengths were selected by GA-PLS based on the 5 subsets. Compared with the whole spectra data model, the GA-iPLS and GA-PLS models could not only improve precision with the coefficients of determination for prediction set improved by 10%, but also simplify the model with 7 primary factors decreased in the model. With the proposed methods, a concise easily computed model can be built to select the characteristic reigon and wavelength of near-infrared spectra.
参考文献

[1] . Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique[J]. Progress in Chemistry, 2004, 16(4): 528-542.

[2] Li Hui, Xie Shusen, Lu Zukang et al.. A new model of the light scattering in biological tissue for visible and near infrared region[J]. Acta Optica Sinica, 1999, 19(12): 1661~1666 (in Chinese)
李晖,谢树森, 陆祖康 等. 生物组织的可见光与近红外光散射模型[J]. 光学学报, 1999, 19(12): 1661~1666

[3] Zhao Jiewen, Zhang Haidong, Liu Muhua. Preprocessing methods of near infrared spectra fro simplifying prediction model of surgar content of apples[J]. Acta Optica Sinica, 2006, 26(1): 1136~1139 (in Chinese)
赵杰文,张海东,刘木华. 简化苹果糖度预测模型的近红外光谱预处理方法[J]. 光学学报, 2006, 26(1): 1136~1139

[4] . Non-destructive determinat ion of sugar contents of apples using near infrared diffuse reflectance[J]. Transactions of the CSAE, 2005, 21(3): 162-165.

[5] . . Effect of biological variability on the robustness of NIR models for soluble solids content of apples[J]. Postharvest Biology and Technology, 2003, 28(3): 269-280.

[6] . Kleynen, V. Leemans, M.-F. Selection of the most efficient wavelength bands for “Jonagold” apple sorting[J]. Postharvest Biology and Technology, 2003, 30(1): 221-232.

[7] . Wayan Budiastra, Yoshio Ikeda, Takahisa Nishizu. Optical methods for quality evaluation of fruits (part 2)-prediction of individual sugars and malic acid concentrations of apples and mangoes by the developed NIR reflectance system[J]. J. JSAM, 1998, 60(3): 117-128.

[8] . Steinmetz, J. M. Roger, E. Molto et al.. On-line fusion of color camera and spectrophotometer for sugar content prediction of apples[J]. J. Agric. Engng. Res., 1999, 73(4): 207-216.

[9] . H. S. Peiris, G. G. Dull, R. G. Leffler et al.. Spatial variability of soluble solids or dry-matter content within individual fruits, bulbs, or tubers: implications for the development and use of NIR spectrometric techniques[J]. Hori Science, 1999, 34(1): 114-118.

[10] . Lammertyn, K. Ooms et al.. Prediction of the optimal picking date of different apple cultivars by means of VIS/NIR-spectroscopy[J]. Postharvest Biology and Technology, 2000, 21(3): 189-199.

[11] . Lammertyn, Ann Peirs, Josse De Baerdemaeker et al.. Light penetration properties of NIR radiation in fruit with respect to non-destructive quality assessment[J]. Postharvest Biology and Technology, 2000, 18(1): 121-132.

[12] . Guyer, Randolph M. Beaudry. Determination of firmness and sugar content of apples using near-infrared diffuse reflectance[J]. J. Texture Studies, 2000, 31(6): 615-630.

[13] . Park, J. A. Abbott, K. J. Lee et al.. Near-infrared diffuse reflectance for quantitative and qualitative measurement of soluble solids and firmness of delicious and Gala apples[J]. Transactions of the ASAE, 2003, 46(6): 1721-1731.

[14] . Nrgaard, A. Saudland, J. Wagner et al.. Interval partial least squares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy[J]. Applied Spectroscopy, 2000, 54(3): 413-419.

[15] . Leardi, A. Lupiáez, González. Genetic algorithms applied to feature selection in PLS regression: how and when to use them[J]. Chemometrics and Intelligent Laboratory Systems, 1998, 41(2): 195-207.

[16] . Leardi, L. Nrgaard. Sequential application of backward interval PLS and genetic algorithms for the selection of relevant spectral regions[J]. J. Chemomelrics, 2004, 18(11): 486-497.

[17] . Leardi. Application of genetic algorithm-PLS for feature selection in spectral data sets[J]. J.Chemometrics and Intelligent Laboratory Systems, 2000, 14(5): 643-655.

邹小波, 赵杰文. 用遗传算法快速提取近红外光谱特征区域和特征波长[J]. 光学学报, 2007, 27(7): 1316. 邹小波, 赵杰文. Methods of Characteristic Wavelength Region and Wavelength Selection Based on Genetic Algorithm[J]. Acta Optica Sinica, 2007, 27(7): 1316.

本文已被 20 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!