激光与光电子学进展, 2016, 53 (4): 042801, 网络出版: 2016-04-05   

基于双可调谐激光器的光纤法布里-珀罗声振动传感解调系统研究 下载: 582次

Research of Optical Fiber Fabry-Perot Acoustic Vibration Sensing Demodulation System Based on Dual Tunable Lasers
作者单位
天津大学精密仪器与光电子工程学院天津大学光纤传感研究所光电信息技术教育部重点实验室, 天津 300072
摘要
为实现光纤法布里-珀罗(F-P)腔初始腔长和腔长变化量在宽范围条件下的声振动传感解调,提出了基于双可调谐激光器的正交相位提取方法。理论计算了保持相位正交的光纤F-P 腔初始腔长范围。仿真和实验研究了初始腔长漂移对信号解调的影响,实验通过改变温度实现了初始腔长0~2.2 μm 的漂移,在此情况下对干涉强度法和正交相位提取法解调结果进行了对比分析,正交相位提取法解调信号幅值相对变化小于5.3%,其稳定性比干涉强度法解调信号幅值稳定性提高了12.4 倍。利用波长调谐补偿实现了传感器初始腔长范围55~130 μm 的覆盖,解调信号幅值相对变化小于4.9%。
Abstract
In order to realize the Fabry-Perot (F-P) acoustic vibration sensing demodulation working under wide range of optical fiber F-P initial cavity length and cavity length shift, a kind of quadrature phase extracting method based on dual tunable lasers is proposed. The range of initial cavity length which keeps quadrature phase is calculated theoretically. The influence of initial cavity length drift on signal demodulation is studied by theoretical simulation and experiment. Initial cavity length drift of 0~2.2 μm is achieved by changing temperature. In this case, interference intensity demodulation method and quadrature phase extracting method are compared and analyzed: relative change of demodulation signal amplitude by quadrature phase extracting method is less than 5.3% ; the stability of demodulation signal amplitude by quadrature phase extracting method is 12.4 times as much as that by interference intensity demodulation method. Initial cavity length of 55~130 μm is realized by wavelength tuning compensation and relative change of demodulation signal amplitude is less than 4.9%.
参考文献

[1] 王文辕, 文建湘, 庞拂飞, 等. 飞秒激光制备的全单模光纤法布里-珀罗干涉高温传感器[J]. 中国激光, 2012, 39(10): 1005001.

    Wang Wenyuan, Wen Jianxiang, Pang Fufei, et al.. All single-mode fiber Fabry-Pérot interferometric high temperature sensor fabricated with femtosecond laser[J]. Chinese J Lasers, 2012, 39(10): 1005001.

[2] 赵鹏, 刘铁根, 江俊峰, 等. 用于水升华器监测的光纤声振动传感器研究[J]. 光学学报, 2014, 34(1): 0106003.

    Zhao Peng, Liu Tiegen, Jiang Junfeng, et al.. Fiber optic acoustic vibration sensor for the monitoring of water sublimator [J]. Acta Optica Sinica, 2014, 34(1): 0106003.

[3] Leng J S, Asundi A. Non-destructive evaluation of smart materials by using extrinsic Fabry-Perot interferometric and fiber Bragg grating sensors[J]. NDT & E International, 2002, 35(4): 273-276.

[4] 张伟超, 赵洪, 楚雄. 基于非本征光纤法布里-珀罗干涉仪的局放声发射传感器设计[J]. 光学学报, 2015, 35(4): 0406002.

    Zhang Weichao, Zhao Hong, Chu Xiong. Partical discharge acoustic emission sensor design based on extrinsic fiber Fabry- Perot interferometer[J]. Acta Optica Sinica, 2015, 35(4): 0406002.

[5] 朱佳利, 王鸣, 蔡东艳, 等. 光纤法布里-珀罗微压传感器[J]. 光学学报, 2014, 34(4): 0428002.

    Zhu Jiali, Wang Ming, Cai Dongyan, et al.. A fiber Fabry-Perot micro pressure sensor[J]. Acta Optica Sinica, 2014, 34(4): 0428002.

[6] Murphy K A, Gunther M F, Vengsarkar A M, et al.. Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors [J]. Opt Lett, 1991, 16(4): 273-275.

[7] Santos J L, Jackson D A. Passive demodulation of miniature fiber- optic- based interferometric sensors using a timemultiplexing technique[J]. Opt Lett, 1991, 16(15): 1210-1212.

[8] Fürstenau N, Schmidt M. Interferometer vibration sensor with two-wavelength passive quadrature readout[J]. IEEE Trans Instrum Meas, 1998, 47(1): 143-147.

[9] Zhao J, Shi Y, Shan N, et al.. Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement [J]. Opt Laser Technol, 2008, 40(6): 874-880.

[10] Dahlem M, Santos J L, Ferreira L A, et al.. Passive interrogation of low-finesse Fabry-Pérot cavities using fiber Bragg gratings [J]. IEEE Photonic Technol Lett, 2001, 13(9): 990-992.

[11] Schmidt M, Fürstenau N. Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation[J]. Opt Lett, 1999, 24(9): 599-601.

[12] 李春成, 王鸣, 夏巍, 等. 基于F-P 腔强度解调的微位移传感器[J]. 光学学报, 2014, 34(6): 0628001.

    Li Chuncheng, Wang Ming, Xia Wei, et al.. A novel Fabry-Perot micro-displacement sensor based on intensity demodulation method[J]. Acta Optica Sinica, 2014, 34(6): 0628001.

[13] Jiang J, Song L, Liu T, et al.. Performance characterization of fiber Bragg grating thermal response in space vacuum thermal environment[J]. Rev Sci Instrum, 2013, 84(12): 123107.

[14] Ott M N. Radiation effects data on commercially available optical fiber: Database summary[C]. Nuclear and Space Radiation Effects Conference, 2002: 24-31.

[15] 赫玉欣, 张丽, 姚大虎, 等. 热塑性塑料对环氧树脂热膨胀系数的影响研究[J]. 化工新型材料, 2012, 40(3): 117-120.

    He Yuxin, Zhang Li, Yao Dahu, et al.. Effect of thermoplastic on the coefficient of thermal expansion of epoxy resin[J]. New Chemical Materials, 2012, 40(3): 117-120.

樊茁, 王双, 刘铁根, 刘琨, 何盼, 张天昊. 基于双可调谐激光器的光纤法布里-珀罗声振动传感解调系统研究[J]. 激光与光电子学进展, 2016, 53(4): 042801. Fan Zhuo, Wang Shuang, Liu Tiegen, Liu Kun, He Pan, Zhang Tianhao. Research of Optical Fiber Fabry-Perot Acoustic Vibration Sensing Demodulation System Based on Dual Tunable Lasers[J]. Laser & Optoelectronics Progress, 2016, 53(4): 042801.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!