光学学报, 2009, 29 (1): 244, 网络出版: 2009-02-10   

多波长级联拉曼光纤激光器的设计

Design of Multi-Wavelength Cascaded Raman Fiber Lasers
作者单位
1 电子科技大学光电信息学院, 四川 成都 610054
2 桂林激光通信研究所, 广西 桂林 541004
摘要
基于稳态条件下描述光纤中受激拉曼散射效应的光功率耦合方程组, 提出一种新的多波长级联拉曼光纤激光器的设计算法。结合遗传算法和打靶法的优点, 采取对每一代种群中少数优良个体进行几次打靶, 使得种群中目标函数最优化值附近的个体加速收敛。以500 m掺磷光纤为增益介质、光纤布拉格光栅构成谐振腔的三波长(1427 nm, 1455 nm, 1480 nm)级联拉曼光纤激光器为例, 采用该算法计算了其输出特性。结果表明,总输出功率与抽运功率近似成线性关系, 斜率效率约51%; 由于谐振腔中三个输出波长相互之间的受激拉曼散射作用产生的能量转移, 使得输出的长波长斯托克斯光斜率效率大于短波长斯托克斯光斜率效率。
Abstract
A novel design algorithm for the steady-state coupled power equations describing stimulated Raman scattering in Multi-wavelength cascaded Raman fiber lasers has been proposed. By taking the advantage of genetic algorithm and shooting method, a few elite individuals with the best fitness on each generation are chosen to implement several shootings to accelerate theirs converging. As an example, the output characteristics of an all-fiber three-wavelength (1427 nm, 1455 nm, and 1480 nm) Raman fiber laser with 500 meters P2O5-doped fiber as gain medium and fiber Bragg gratings as resonators has been analyzed with the algorithm. The results show that the total output power linearly depends on the pump power approximately with a slope efficiency of ~51%; the slop efficiency of longer wavelengths is larger than that of the shorter wavelengths due to the longer wavelengths gain additional power at the expense of the power of the shorter wavelengths.
参考文献

[1] S. A. Babin, D. V. Churkin, S. I. Kablukov 等. 二阶级联拉曼光纤激光器的特性\[J\]. 中国激光, 2007, 34(2): 156~162

    S. A. Babin, D. V. Churkin, S. J. Kablukov et al.. Characteristics of a two cascaded Raman fiber laser[J]. Chinese J. Lasers, 2007, 34(2): 156~162

[2] 胡姝玲,张春熹,高春清 等. 包层抽运掺镱光纤激光器中受激拉曼散射和受激布里渊散射效应[J]. 中国激光, 2008, 35(1): 6~10

    Hu Shuling, Zhang Chunxi, Gao Chunqing et al.. Stimulated Raman Scattering and Stimulated Brillouin scattering effects in ytterbium doped double clad fiber laser[J]. Chinese J. Lasers, 2008, 35(1): 6~10

[3] 张显斌,施卫. 基于耦合场量子受激拉曼散射的太赫兹波辐射\[J\]. 光学学报, 2008, 28(5): 1012~1016

    Zhang Xianbin, Shi Wei. Thz electromagnetic radiation based on the stimulated Raman scattering of polariton\[J\]. Acta Optica Sinica, 2008, 28(5): 1012~1016

[4] 郑宏军,刘山亮, 田振 等. 拉曼放大对孤子传输特性的影响\[J\]. 中国激光, 2008, 35(6): 861~866

    Zheng Hongjun, Liu Shanliang, Tian Zhen et al.. Effects of Raman amplification on propagation characteristics of the soliton\[J\]. Chinese J. Lasers, 2008, 35(6): 861~866

[5] 蔡伟琦,黄朝红, 许惠英 等. 级联拉曼激光器的二阶近似解\[J\]. 中国激光, 2008, 35(10): 1449~1454

    Cai Weiqi, Huan Chaohong, Xu Huiying et al.. Second-order approximate solution of cascaded Raman lasers\[J\]. Chinese J. Lasers, 2008, 35(10): 1449~1454

[6] 胡大伟,王正平, 张怀金 等. GdVO4晶体的受激拉曼散射\[J\]. 中国激光, 2008, 35(1): 11~16

    Hu Dawei, Wang Zhengping, Zhang Huaijin et al.. Stimulated Raman scattering of GdVO4 crystal\[J\]. Chinese J. Lasers, 2008, 35(1): 11~16

[7] . Namiki, Y. Emori. Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes[J]. IEEE J. Sel. Top. Quantum Electron., 2001, 7(1): 3-16.

[8] . E. Perlin, H. G. Winful. Optimal design of flat-gain wide-band fiber Raman amplifiers[J]. IEEE J. Lightwave Technol., 2002, 20(2): 250-254.

[9] . D. Mermelstein, C. Headley, J. C. Bouteiller et al.. Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flatterning[J]. IEEE Photon. Technol. Lett., 2001, 13(12): 1286-1288.

[10] . Leplingard, S. Bome, L. Lorcy et al.. Six output wavelength Raman fibre laser for Raman amplification[J]. Electron. Lett., 2002, 38(16): 886-887.

[11] X. Normandin, F. Leplingard, E. Bourova et al.. Experimental assement of phospho-silicate fibers for three wavelength (1427 nm, 1455 nm, 1480 nm) reconfigurable Raman lasers[C]. OFC ′2002, TuB2

[12] . A. Demidov, A. N. Starodumov, X. Li et al.. Three-wavelength Raman fiber laser with reliable dynamic control[J]. Opt. Lett., 2003, 28(17): 1540-1542.

[13] . Xiong, T. Chen. Multi-wavelength Raman fiber laser with 2- and 3-stage cavities in a phosphosilicate fibe[J]. Opt. Commun., 2007, 13(1): 81-84.

[14] . Leplingard, C. Martinelli, S. Borne et al.. Modeling of multiwavelength Raman fiber lasers using a new and fast algorithm[J]. IEEE Photon. Technol. Lett., 2004, 16(12): 2601-2603.

[15] 秦祖军, 周晓军, 李发丹 等. 多阶级联拉曼光纤激光器理论分析与优化设计[J]. 中国激光, 2007, 34(6): 786~790

    Qin Zujun, Zhou Xiaojun, Li Fadan et al.. Theoretical analysis and optimized design of multi-order cascaded Raman fiber lasers[J]. Chinese J. Lasers, 2007, 34(6): 786~790

[16] . Qin, X. Zhou, Q. Li et al.. An improved theoretical model of nth-order cascaded Raman fiber lasers[J]. IEEE J. Lightwave Technol., 2007, 25(6): 1555-1560.

[17] M. N. Islam. Raman Amplifiers for Telecommunications. 2: Sub-Systems and Systems[M]. New York: Springer-Verlag, 2004. 353~382

秦祖军, 周晓军, 伍浩成, 邹自立. 多波长级联拉曼光纤激光器的设计[J]. 光学学报, 2009, 29(1): 244. Qin Zujun, Zhou Xiaojun, Wu Haocheng, Zou Zili. Design of Multi-Wavelength Cascaded Raman Fiber Lasers[J]. Acta Optica Sinica, 2009, 29(1): 244.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!