Photonics Research, 2013, 1 (1): 01000001, Published Online: Jul. 17, 2013   

Self-configuring universal linear optical component [Invited] Download: 933次

Author Affiliations
Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305-4088, USA
Copy Citation Text

David A. B. Miller. Self-configuring universal linear optical component [Invited][J]. Photonics Research, 2013, 1(1): 01000001.

References

[1] M. P. J. Lavery, A. Dudley, A. Forbes, J. Courtial, M. J. Padgett. Robust interferometer for the routing of light beams carrying orbital angular momentum. New J. Phys., 2011, 13: 093014.

[2] T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, S. J. B. Yoo. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Opt. Express, 2012, 20: 9396-9402.

[3] R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, R. Lingle. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 MIMO processing. J. Lightwave Technol., 2012, 30: 521-531.

[4] M. Gerken, D. A. B. Miller. Multilayer thin-film structures with high spatial dispersion. Appl. Opt., 2003, 42: 1330-1345.

[5] M. Gerken, D. A. B. Miller. Multilayer thin-film stacks with steplike spatial beam shifting. J. Lightwave Technol., 2004, 22: 612-618.

[6] T. Tanemura, K. C. Balram, D.-S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, D. A. B. Miller. Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler. Nano Lett., 2011, 11: 2693-2698.

[7] V. Liu, Y. Jiao, D. A. B. Miller, S. Fan. Design methodology for compact photonic-crystal-based wavelength division multiplexers. Opt. Lett., 2011, 36: 591-593.

[8] R. W. Boyd, D. J. Gauthier. Controlling the velocity of light pulses. Science, 2009, 326: 1074-1077.

[9] J. B. Khurgin. Slow light in various media: a tutorial. Adv. Opt. Photon., 2010, 2: 287-318.

[10] H. Chen, C. T. Chan, P. Sheng. Transformation optics and metamaterials. Nat. Mater., 2010, 9: 387-396.

[11] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 2006, 312: 1780-1782.

[12] U. Leonhardt. Optical conformal mapping. Science, 2006, 312: 1777-1780.

[13] D. A. B. Miller. On perfect cloaking. Opt. Express, 2006, 14: 12457-12466.

[14] D. A. B. Miller. All linear optical devices are mode converters. Opt. Express, 2012, 20: 23985-23993.

[15] D. A. B. Miller. How complicated must an optical component be?. J. Opt. Soc. Am. A, 2013, 30: 238-251.

[16] G. A. Rakuljic, V. Leyva, A. Yariv. Optical data storage by using orthogonal wavelength-multiplexed volume holograms. Opt. Lett., 1992, 17: 1471-1473.

[17] L. Hesselink, S. S. Orlov, M. C. Bashaw. Holographic data storage systems. Proc. IEEE, 2004, 92: 1231-1280.

[18] GoodmanJ. W., Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).

[19] Y. Jiao, S. H. Fan, D. A. B. Miller. Demonstration of systematic photonic crystal device design and optimization by low rank adjustments: an extremely compact mode separator. Opt. Lett., 2005, 30: 141-143.

[20] V. Liu, D. A. B. Miller, S. H. Fan. Highly tailored computational electromagnetics methods for nanophotonic design and discovery. Proc. IEEE, 2013, 101: 484-493.

[21] D. A. B. Miller. Self-aligning universal beam coupler. Opt. Express, 2013, 21: 6360-6370.

[22] P. Günter. Holography, coherent light amplification and optical phase conjugation with photorefractive materials. Phys. Rep., 1982, 93: 199-299.

[23] A. Yariv. Phase conjugate optics and real-time holography. IEEE J. Quantum Electron., 1978, QE-14: 650-660.

[24] D. A. B. Miller. Time reversal of optical pulses by four-wave mixing. Opt. Lett., 1980, 5: 300-302.

[25] F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, R. Baets. Focusing polarization diversity grating couplers in silicon-on-insulator. J. Lightwave Technol., 2009, 27: 612-618.

[26] F. Heismann. Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems. J. Lightwave Technol., 1994, 12: 690-699.

[27] MurnaghanF. D., The Unitary and Rotation Groups (Spartan, 1962).

[28] M. Reck, A. Zeilinger, H. J. Bernstein, P. Bertani. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 1994, 73: 58-61.

[29] D. A. B. Miller. Communicating with waves between volumes—evaluating orthogonal spatial channels and limits on coupling strengths. Appl. Opt., 2000, 39: 1681-1699.

[30] MillerD. A. B., Quantum Mechanics for Scientists and Engineers (Cambridge, 2008).

[31] F. Buhrer, D. Baird, E. M. Conwell. Optical frequency shifting by electro-optic effect. Appl. Phys. Lett., 1962, 1: 46-49.

[32] C. K. Madsen. Boundless-range optical phase modulator for high-speed frequency-shift heterodyne applications. J. Lightwave Technol., 2006, 24: 2760-2767.

[33] M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, S. B. Christman. 1.5 μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides. IEEE Photon. Technol. Lett., 1999, 11: 653-655.

[34] P. P. Baveja, Y. Xiao, S. Arora, G. P. Agrawal, D. N. Maywar. All-optical semiconductor optical amplifier-based wavelength converters with sub-mW pumping. IEEE Photon. Technol. Lett., 2013, 25: 78-80.

[35] R. N. Mahalati, D. Askarov, J. P. Wilde, J. M. Kahn. Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling. Opt. Express, 2012, 20: 14321-14337.

[36] P. Markov, J. G. Valentine, S. M. Weiss. Fiber-to-chip coupler designed using an optical transformation. Opt. Express, 2012, 20: 14705-14713.

[37] D. Dai, Y. Tang, J. E. Bowers. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt. Express, 2012, 20: 13425-13439.

[38] L. H. Gabrielli, M. Lipson. Integrated Luneburg lens via ultra-strong index gradient on silicon. Opt. Express, 2011, 19: 20122-20127.

[39] M.-C. Wu, F.-C. Hsiao, S.-Y. Tseng. Adiabatic mode conversion in multimode waveguides using chirped computer-generated planar holograms. IEEE Photon. Technol. Lett., 2011, 23: 807-809.

[40] DoerrC. R.FontaineN. K.HiranoM.SasakiT.BuhlL. L.WinzerP. J., “Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing,” in European Conference on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.A.3.

[41] S. H. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popović, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, C. R. Doerr. Comment on ‘Nonreciprocal light propagation in a silicon photonic circuit’. Science, 2012, 335: 38.

[42] LoudonR., The Quantum Theory of Light, 3rd ed. (Oxford, 2000), pp. 8891.

[43] R. C. Alferness. Waveguide electrooptic modulators. IEEE Trans. Microwave Theory, 1982, 30: 1121-1137.

[44] Y. Fujii. High-isolation polarization-independent optical circulator coupled with single-mode fibers. J. Lightwave Technol., 1991, 9: 456-460.

[45] Z. Wang, S. H. Fan. Optical circulators in two-dimensional magneto-optical photonic crystals. Opt. Lett., 2005, 30: 1989-1991.

[46] S. Kawanishi. Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing. IEEE J. Quantum Electron., 1998, 34: 2064-2079.

[47] E. Palushani, H. C. Hansen Mulvad, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen. OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation. IEEE J. Sel. Top. Quantum Electron., 2012, 18: 681-688.

David A. B. Miller. Self-configuring universal linear optical component [Invited][J]. Photonics Research, 2013, 1(1): 01000001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!