激光与光电子学进展, 2016, 53 (3): 030004, 网络出版: 2016-03-04   

硫系拉曼光纤激光器研究进展 下载: 838次

Research Progress in Chalcogenide Glass Raman Fiber Lasers
作者单位
宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211
摘要
硫系玻璃具有优良的中红外光学透过性能、极高的线性和非线性折射率。近年来,硫系玻璃光纤中较高的受激拉曼效应在全光器件和级联激光器等方面的应用引起了研究者极大的关注。回顾了硫系玻璃拉曼光纤激光器的研究历程,包括对硫系级联拉曼光纤激光器、硫系微纳光纤拉曼光纤激光器和硫系拉曼光纤激光器的理论研究,指出了现有研究存在的问题,并对其发展前景进行了展望。
Abstract
Chalcogenide glasses have many attractive characteristics including wide infrared transmittance, extremely high linear and nonlinear refractive indexes. Recently, stimulated Raman effects in chalcogenide glass fibers attract extensive attention for their potential applications in all-optical devices and cascade lasers. In this article, the research progress in chalcogenide glass Raman fiber lasers (RFLs) is reviewed, including cascaded chalcogenide RFL, mi? crowire chalcogenide RFL, and theoretical studies of chalcogenide RFL. Current challenges in RFL are discussed their potential applications are summarized.
参考文献

[1] R H Stolen. Raman oscillation in glass optical waveguide[J]. Applied Physics Letters, 1972, 20(2): 62-64.

[2] C Fortier. Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber[J]. Optics Express, 2008, 16(13): 9398-9404.

[3] C Fortier, J Fatome, S Pitois, et al.. Experimental investigation of Brillouin and Raman scattering in a Ge15Sb20S65 microstructured chalcogenide fiber[C]. European Conference on Optical Communication, 2008.

[4] J Shi, S U Alam, M I bsen. Highly efficient Raman distributed feedback fibre lasers[J]. Opt Express, 2012, 20(5): 5082-5091.

[5] 张在宣, 刘红林, 戴碧智, 等. 分布式光纤拉曼放大器研制的进展[J]. 中国计量学院学报, 2005, 16(02): 93-99.

    Zhang Zaixuan, Liu Honglin, Dai Bizhi, et al.. The development of study and manufacture of distributed fiber Raman amplifier [J]. Journal of China Jiliang University, 2005, 16(2): 93-99.

[6] 殷科, 许将明, 冷进勇, 等. 高功率光纤拉曼激光器研究进展[J]. 激光与光电子学进展, 2012, 49(1): 010004.

    Yin Ke, Xu Jiangming, Leng Jinyong, et al.. Research progress of high power fiber Raman lasers[J]. Laser & Optoelectronics Progress, 2012, 49(1): 010004.

[7] 刘红林, 张在宣, 金尚忠, 等. 光纤拉曼放大器技术的进展[J]. 中国计量学院学报, 2001, 12(3): 53-58.

    Liu Honglin, Zhang Zaixuan, Jing Shangzhong, et al.. Progress in fiber Raman amplifier technology[J]. Journal of China Jiliang University, 2001, 12(3): 53-58.

[8] 周晓军, 秦祖军, 伍浩成, 等. 级联拉曼光纤激光器研究进展[J]. 红外与激光工程, 2008, 37(S3): 32-37.

    Zhou Xiaojun, Qin Zujun, Wu Haocheng, et al.. Advanced incascaded Raman fiber lasers[J]. Infrared and Laser Engineering, 2008, 37(S3): 32-37.

[9] 王聪, 张行愚, 王青圃, 等. 外腔抽运SrWO4反斯托克斯拉曼激光器[J]. 中国激光, 2014, 41(3): 0302008.

    Wang Cong, Zhang Xingyu, Wang Qingpu, et al.. External cavity SrWO4 pumped anti-Stokes Raman laser[J]. Chinese J Lasers, 2014, 41(3): 0302008.

[10] 王泽锋, 于飞, J W William, 等. 单程高增益1.9 μm 光纤气体拉曼激光器[J]. 光学学报, 2014, 34(8): 0814004.

    Wang Zefeng, Yu Fei, J W William, et al.. One-way high-gain 1.9 μm gas Raman fiber laser[J]. Acta Optica Sinica, 2014, 34 (8): 0814004.

[11] 李述涛, 董渊, 金光勇, 等. 连续腔内倍频拉曼激光器的归一化理论解析[J]. 红外与激光工程, 2015, 44(1): 71-75.

    Li Shutao, Dong Yuan, Jing Guangyong, et al.. Normalized theoretical analysis of continuous cavity frequency doubling Raman laser[J]. Infrared and Laser Engineering, 2015, 44(1): 71-75.

[12] 王莹, 罗正钱, 熊凤福, 等. 数值优化3~ 5 μm 中红外ZBLAN 光纤拉曼激光器的研究[J]. 激光与光电子学进展, 2014, 51 (6): 061405.

    Wang Ying, Luo Zhengqian, Xiong Fengfu, et al.. Numerical optimization rearch of 3~5 μm mid-infrared ZBLAN Raman fiber lasers[J]. Laser & Optoelectronics Progress, 2014, 51(6): 061405.

[13] Jianfeng Li, Yu Chen, Ming Chen, et al.. Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser[J]. Optics Communications, 2011, 284(5): 1278-1283.

[14] T Kohoutek, X Yan, T Shiosaka, et al.. Transient Raman response of novel chalcogenide micro-structured optical fibre[C]. The European Conference on Lasers and Electro-Optics, 2011: CE_P30.

[15] T Kohoutek, X Yan, T W Shiosaka, et al.. Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers[J]. JOSAB, 2011, 28(9): 2284-2290.

[16] K S Abedin. Brillouin amplification and lasing in a single-mode As2Se3 chalcogenide fiber[J]. Optics Letters, 2006, 31(11): 1615-1617.

[17] R J Nemanich. Low-frequency inelastic light scattering from chalcogenide glasses and alloys[J]. Physical Review B, 1977, 16(4): 1655-1674.

[18] S D Jackson, G Anzueto-Sánchez. Chalcogenide glass Raman fiber laser[J]. Applied Physics Letters, 2006, 88(22): 221106.

[19] R E Slusher, G Lenz, J Hodelin, et al.. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers [J]. Journal of the Optical Society of America B-Optical Physics, 2004, 21(6): 1146-1155.

[20] S T Hendow, V Fortin, M Bernier, et al.. Monolithic mid-infrared fiber lasers for the 2-4 μm spectral region[C]. SPIE, 2013, 8601: 86011H.

[21] M Asobe, T Kanamori, K Naganuma, et al.. Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers[J]. Journal of Applied Physics, 1995, 77(11): 5518-5523.

[22] P A Thielen, L B Shaw, P C Pureza, et al.. Small-core As-Se fiber for Raman amplification[J]. Optics Letters, 2003, 28(16): 1406-1408.

[23] P A Thielen, L B Shaw, P C Pureza, et al.. Raman amplification in As-Se fiber[C]. High-Power Lasers and Applications, 2002: 74-77.

[24] A Tuniz, G Brawley, D J Moss, et al.. Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber[J]. Opt Express, 2008, 16(22): 18524-18534.

[25] C Xiong, E Magi, F Luan, et al.. Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber[J]. Applied Optics, 2009, 48(29): 5467-5474.

[26] P A Thielen. Modeling of a mid-IR chalcogenide fiber Raman laser[J]. Optics Express, 2003, 11(24): 3248-3253.

[27] V Fortin, M Bernier, M El-Amraoui, et al.. Modeling of As2S3 Raman fiber lasers operating in the mid-infrared[J]. IEEE Photonics Journal, 2013, 5(6): 1502309.

[28] R Ahmad, M Rochette. Raman lasing in a chalcogenide microwire-based Fabry-Perot cavity[J]. Opt Lett, 2012, 37(21): 4549- 4551.

[29] 李剑峰, 陈明, 陈玉, 等.2 μm 抽运中红外硫化玻璃光纤拉曼激光器的理论分析与优化[J]. 光散射学报, 2010, (3): 220-226.

    Li Jianfeng, Chen Ming, Chen Yu, et al.. Theoretical analysis and optimization of mid-infrared chalcogenide fiber Raman laser pumped at 2 μm[J]. The Journal of Light Scattering, 2010, (3): 220-226.

[30] R Ahmad, M Rochette. Chalcogenide microwire based Raman laser[J]. Applied Physics Letters, 2012, 101(10): 101110.

[31] M Bernier, V Fortin, M El-Amraoui, et al.. 3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber [J]. Opt Lett, 2014, 39(7): 2052-2055.

[32] M Bernier, V Fortin, N Caron, et al.. Mid-infrared chalcogenide glass Raman fiber laser[J]. Optics Letters, 2013, 38(2): 127- 129.

[33] R Ahmad, M Rochette. All-chalcogenide Raman-parametric laser, wavelength converter, and amplifier in a single microwire [J]. Selected Topics in Quantum Electronics, IEEE Journal of, 2014, 20(5): 299-304.

[34] R Ahmad, M Rochette. All chalcogenide Raman-parametric laser, wavelength converter and broadband source in a single microwire[C]. CLEO: Science and Innovations, 2014: STh1I. 7.

徐航, 戴世勋, 张培晴, 李杏, 吴越豪, 吴丽华, 刘自军, 王训四, 徐铁峰, 聂秋华. 硫系拉曼光纤激光器研究进展[J]. 激光与光电子学进展, 2016, 53(3): 030004. Xu Hang, Dai Shixun, Zhang Peiqing, Li Xing, Wu Yuehao, Wu Lihua, Liu Zijun, Wang Xunsi, Xu Tiefeng, Nie Qiuhua. Research Progress in Chalcogenide Glass Raman Fiber Lasers[J]. Laser & Optoelectronics Progress, 2016, 53(3): 030004.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!