光学学报, 2018, 38 (6): 0606004, 网络出版: 2018-07-09   

水下轨道角动量态传输特性的实验研究 下载: 856次

Experimental Investigation of Underwater Propagation Characteristics of Orbital Angular Momentum
作者单位
1 南京邮电大学信号处理与传输研究院, 江苏 南京 210003
2 南京邮电大学宽带无线通信与传感网技术教育部重点实验室, 江苏 南京 210003
引用该论文

潘孙翔, 赵生妹, 王乐, 姚浩, 李威. 水下轨道角动量态传输特性的实验研究[J]. 光学学报, 2018, 38(6): 0606004.

Sunxiang Pan, Shengmei Zhao, Le Wang, Hao Yao, Wei Li. Experimental Investigation of Underwater Propagation Characteristics of Orbital Angular Momentum[J]. Acta Optica Sinica, 2018, 38(6): 0606004.

参考文献

[1] Soskin M S, Vasnetsov M V. Singular optics[J]. Progress in Optics, 2001, 42: 219-276.

    Soskin M S, Vasnetsov M V. Singular optics[J]. Progress in Optics, 2001, 42: 219-276.

[2] Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

    Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

[3] 葛筱璐, 王本义, 国承山. 涡旋光束在湍流大气中的光束扩展[J]. 光学学报, 2016, 36(3): 0301002.

    葛筱璐, 王本义, 国承山. 涡旋光束在湍流大气中的光束扩展[J]. 光学学报, 2016, 36(3): 0301002.

    Ge X L, Wang B Y, Guo C S. Beambroadening of vortex beams propagating in turbulent atmosphere[J]. Acta Optica Sinica, 2016, 36(3): 0301002.

    Ge X L, Wang B Y, Guo C S. Beambroadening of vortex beams propagating in turbulent atmosphere[J]. Acta Optica Sinica, 2016, 36(3): 0301002.

[4] Molina-Terriza G, Vaziri A. Reh a'cek J, et al. Triggered qutrits for quantum communication protocols [J]. Physical Review Letters, 2004, 92(16): 167903.

    Molina-Terriza G, Vaziri A. Reh a'cek J, et al. Triggered qutrits for quantum communication protocols [J]. Physical Review Letters, 2004, 92(16): 167903.

[5] Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication[J]. Physical Review Letters, 2005, 94(15): 153901.

    Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication[J]. Physical Review Letters, 2005, 94(15): 153901.

[6] 罗伟, 程书博, 袁战忠, 等. 幂指数相位涡旋光束用于微粒操控[J]. 光学学报, 2014, 34(11): 1109001.

    罗伟, 程书博, 袁战忠, 等. 幂指数相位涡旋光束用于微粒操控[J]. 光学学报, 2014, 34(11): 1109001.

    Luo W, Cheng S B, Yuan Z Z, et al. Power-exponent-phase vortices for manipulating particles[J]. Acta Optica Sinica, 2014, 34(11): 1109001.

    Luo W, Cheng S B, Yuan Z Z, et al. Power-exponent-phase vortices for manipulating particles[J]. Acta Optica Sinica, 2014, 34(11): 1109001.

[7] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316.

    Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316.

[8] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.

    Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.

[9] Ren Y, Wang Z, Liao P, et al. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m[J]. Optics Letters, 2016, 41(3): 622-625.

    Ren Y, Wang Z, Liao P, et al. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m[J]. Optics Letters, 2016, 41(3): 622-625.

[10] 张磊, 宿晓飞, 张霞, 等. 基于Kolmogorov模型的大气湍流对于空间光通信轨道角动量模式间串扰影响的研究[J]. 光学学报, 2014, 34(s2): s201004.

    张磊, 宿晓飞, 张霞, 等. 基于Kolmogorov模型的大气湍流对于空间光通信轨道角动量模式间串扰影响的研究[J]. 光学学报, 2014, 34(s2): s201004.

    Zhang L, Su X F, Zhang X, et al. Study of orbital angular momentum mode crosstalk caused by atmospheric turbulence based on Kolmogorov model in free space optical communication[J]. Acta Optica Sinica, 2014, 34(s2): s201004.

    Zhang L, Su X F, Zhang X, et al. Study of orbital angular momentum mode crosstalk caused by atmospheric turbulence based on Kolmogorov model in free space optical communication[J]. Acta Optica Sinica, 2014, 34(s2): s201004.

[11] 赵生妹, 蒋欣成, 巩龙延, 等. 轨道角动量态复用通信研究[J]. 南京邮电大学学报(自然科学版), 2015, 35(6): 1-13.

    赵生妹, 蒋欣成, 巩龙延, 等. 轨道角动量态复用通信研究[J]. 南京邮电大学学报(自然科学版), 2015, 35(6): 1-13.

    Zhao S M, Jiang X C, Gong L Y, et al. Communications using orbital angular momentum multiplexing[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2015, 35(6): 1-13.

    Zhao S M, Jiang X C, Gong L Y, et al. Communications using orbital angular momentum multiplexing[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2015, 35(6): 1-13.

[12] Duntley S Q. Light in the Sea[J]. Journal of the Optical Society of America, 1963, 53(2): 214-233.

    Duntley S Q. Light in the Sea[J]. Journal of the Optical Society of America, 1963, 53(2): 214-233.

[13] 彭波, 钟昆, 李中云. 拓扑荷数对拉盖尔-高斯涡旋光浑浊水下传输的影响[J]. 光学学报, 2017, 37(6): 0601005.

    彭波, 钟昆, 李中云. 拓扑荷数对拉盖尔-高斯涡旋光浑浊水下传输的影响[J]. 光学学报, 2017, 37(6): 0601005.

    Peng B, Zhong K, Li Z Y. Influence of topological charge on turbid underwater propagation of Laguerre-Gaussian vortex beams[J]. Acta Optica Sinica, 2017, 37(6): 0601005.

    Peng B, Zhong K, Li Z Y. Influence of topological charge on turbid underwater propagation of Laguerre-Gaussian vortex beams[J]. Acta Optica Sinica, 2017, 37(6): 0601005.

[14] Morgan KS, Johnson EG, Cochenour BM. Attenuation of beams with orbital angular momentum for underwater communication systems[C]. Proceedings of IEEE, 2016: 15798898.

    Morgan KS, Johnson EG, Cochenour BM. Attenuation of beams with orbital angular momentum for underwater communication systems[C]. Proceedings of IEEE, 2016: 15798898.

[15] Baghdady J, Miller K, Morgan K, et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing[J]. Optics Express, 2016, 24(9): 9794-9805.

    Baghdady J, Miller K, Morgan K, et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing[J]. Optics Express, 2016, 24(9): 9794-9805.

[16] Oubei H M, Li C, Park K H, et al. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode[J]. Optics Express, 2015, 23(16): 20743-20748.

    Oubei H M, Li C, Park K H, et al. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode[J]. Optics Express, 2015, 23(16): 20743-20748.

[17] Shen C, Guo Y, Oubei H M, et al. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate[J]. Optics Express, 2016, 24(22): 25502-25509.

    Shen C, Guo Y, Oubei H M, et al. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate[J]. Optics Express, 2016, 24(22): 25502-25509.

[18] Oubei H M, Duran J R, Janjua B, et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication[J]. Optics Express, 2015, 23(18): 23302-23309.

    Oubei H M, Duran J R, Janjua B, et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication[J]. Optics Express, 2015, 23(18): 23302-23309.

[19] Curtis J E, Grier D G. Modulated optical vortices[J]. Optics Letters, 2003, 28(11): 872-874.

    Curtis J E, Grier D G. Modulated optical vortices[J]. Optics Letters, 2003, 28(11): 872-874.

[20] Jesacher A, Schwaighofer A, Fürhapter S, et al. Wavefront correction of spatial light modulators using an optical vortex image[J]. Optics Express, 2007, 15(9): 5801-5808.

    Jesacher A, Schwaighofer A, Fürhapter S, et al. Wavefront correction of spatial light modulators using an optical vortex image[J]. Optics Express, 2007, 15(9): 5801-5808.

[21] Cheng M, Zhang Y, Zhu Y, et al. Effects of non-Kolmogorov turbulence on the orbital angular momentum of Hankel-Bessel-Schell beams[J]. Optics & Laser Technology, 2015, 67: 20-24.

    Cheng M, Zhang Y, Zhu Y, et al. Effects of non-Kolmogorov turbulence on the orbital angular momentum of Hankel-Bessel-Schell beams[J]. Optics & Laser Technology, 2015, 67: 20-24.

[22] Zhu Y, Zhang L C, Zhang Y X. Spiral spectrum of Airy-Schell beams through non-Kolmogorov turbulence[J]. Chinese Optics Letters, 2016, 14(4): 042101-042105.

    Zhu Y, Zhang L C, Zhang Y X. Spiral spectrum of Airy-Schell beams through non-Kolmogorov turbulence[J]. Chinese Optics Letters, 2016, 14(4): 042101-042105.

[23] Lu W, Liu L, Sun J. Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence[J]. Journal of Optics A, 2006, 8(12): 1052-1058.

    Lu W, Liu L, Sun J. Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence[J]. Journal of Optics A, 2006, 8(12): 1052-1058.

[24] Nikishov V V, Nikishov V I. Spectrum of turbulent fluctuations of the sea-water refraction index[J]. International Journal of Fluid Mechanics Research, 2000, 27(1): 82-98.

    Nikishov V V, Nikishov V I. Spectrum of turbulent fluctuations of the sea-water refraction index[J]. International Journal of Fluid Mechanics Research, 2000, 27(1): 82-98.

潘孙翔, 赵生妹, 王乐, 姚浩, 李威. 水下轨道角动量态传输特性的实验研究[J]. 光学学报, 2018, 38(6): 0606004. Sunxiang Pan, Shengmei Zhao, Le Wang, Hao Yao, Wei Li. Experimental Investigation of Underwater Propagation Characteristics of Orbital Angular Momentum[J]. Acta Optica Sinica, 2018, 38(6): 0606004.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!