中国激光, 2014, 41 (11): 1102002, 网络出版: 2014-10-08   

单偏振半导体光放大器扫频光相干成像系统

Optical Coherence Imaging System Based on a Polarization-Dependent Semiconductor Optical Amplifier-Enabled Swept Laser
作者单位
1 清华大学电子工程系信息科学与技术国家实验室, 集成光电子学国家重点实验室, 北京 100084
2 北京无线电计量测试研究所, 北京 100039
3 计量与校准技术国家级重点实验室, 北京 100039
摘要
搭建完成了基于单偏振半导体光放大器扫频光源的光相干成像系统,此系统可以实现高速光相干层析成像与光相干显微成像。系统中的扫频光源使用偏振相关的半导体光放大器作为放大单元,该光放大器有着增益谱宽大、输出功率高的优点,使得光源仅使用一个放大器即可获得合适的增益谱宽与输出功率,并可采用傅里叶域锁模技术大幅提高其扫频速率。采用傅里叶域锁模技术时,扫频光源输出功率达到32 mW左右,有效扫描频率为45 kHz,输出光谱的中心波长为1326 nm,光谱宽度为115 nm。利用系统进行高速光相干层析成像时,横向分辨率为9 μm,纵向分辨率为12.9 μm左右,灵敏度为105 dB。利用系统进行光相干显微成像时,可以清楚地看到洋葱内表皮细胞的结构。
Abstract
As noninvasive biomedical imaging techniques, optical coherence tomography (OCT) and optical coherence microscopy have good application prospects in future. A swept-source imaging system based on a polarization-dependent semiconductor optical amplifier (SOA) enabled Fourier domain mode locked laser (FDML) is demonstrated, which can be used for the two imaging techniques mentioned above. The FDML with a polarization-dependent SOA generates ~32 mW output power at 45 kHz sweep rates, with a tuning range of 115 nm centered at 1326 nm. Because of the broad bandwidth and high saturation power of the polarization-dependent SOA, the laser has the advantage of simple structure. It uses only one SOA for operating with enough bandwidth and output power. Using the SOA-enabled FDML laser, an OCT system with axial resolution of ~12.9 μm, transverse spot size of 9 μm and sensitivity of 105 dB is achieved. The structure of the epidermal cells of onion can be observed by this imaging system.
参考文献

[1] G Ripandelli, A M Coppé, A Capaldo, et al.. Optical coherence tomography[J]. Seminars in Ophthalmology, 1998, 13(4): 199-202.

[2] M Wojtkowski, T Bajraszewski, P Targowski, et al.. Real-time in vivo imaging by high-speed spectral optical coherence tomography[J]. Opt Lett, 2003, 28(19): 1745-1747.

[3] M R Hee, J A Izatt, E A Swanson, et al.. Optical coherence tomography of the human retina[J]. Archives of Ophthalmology, 1995, 113(3): 325-332.

[4] J Welzel. Optical coherence tomography in dermatology: a review[J]. Skin Research and Technology, 2001, 7(1): 1-9.

[5] J Sanz, Z A Fayad. Imaging of atherosclerotic cardiovascular disease[J]. Nature, 2008, 451(1181): 953-957.

[6] D Huang, E A Swanson, C P Lin, et al.. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

[7] J F D Boer, B Cense, B H Park, et al.. Improved signal-to-noise ratio in spectral-domain comparedwith time-domain optical coherence tomography[J]. Opt Lett, 2003, 28(21): 2067-2069.

[8] R Huber, M Wojtkowski, K Taira, et al.. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles[J]. Opt Express, 2005, 13(9): 3513-3528.

[9] R Huber, M Wojtkowski, J G Fujimoto. Fourier domain mode locking (FDML): A newlaser operating regime and applications foroptical coherence tomography[J]. Opt Express, 2006, 14(8): 3225-3237.

[10] R Huber, D C Adler, J G Fujimoto. Buffered Fourierdomain mode locking: Unidirectional swept laser sources foroptical coherence tomography imaging at 370,000 lines/s[J]. Opt Lett, 2006, 31(20): 2975-2977.

[11] T Klein, W Wieser, C M Eigenwillig, et al.. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser[J]. Opt Express, 2011, 19(4): 3044-3062.

[12] D C Adler, W Wieser, F Trepanier, et al.. Extended coherence length Fourier domain mode locked lasers at 1310 nm[J]. Opt Express, 2011, 19(21): 20930-20939.

[13] Jun Zhang, Pinghe Wang, Zhongping Chen, et al.. Long imaging range optical coherence tomography based on a narrowline-width dual band Fourier domain mode-locked swept source[C]. SPIE, 2011, 7889: 78892P.

[14] Jun Zhang, Joe Jing, Pinghe Wang, et al.. Polarization-maintaining buffered Fourierlocked domain mode-locked sweptsource for optical coherence tomography[J]. Opt Lett, 2011, 36(24): 4788-4790.

[15] 陈明惠. 扫频激光光源的研制[D]. 杭州: 浙江大学, 2011. 13-15.

    Chen Minghui. Development of Swept Laser Source for Optical Coherence Tomography[D]. Hangzhou: Zhejiang University, 2011. 13-15.

[16] 陈明惠, 丁志华, 王成, 等. 基于法布里珀罗调谐滤波器的傅里叶域锁模扫频激光光源[J]. 物理学报, 2013, 62(6): 068703.

    Chen Minghui, Ding Zhihua, Wang Cheng, et al.. Fiber Fabry-Perot tunable filter based Fourierdomain mode locking swept laser source[J]. Acta Phys Sin, 2013, 62(6): 068703.

[17] 陈明惠, 丁志华, 陶渊浩, 等. 宽带快速线性扫频激光光源的研制[J]. 中国激光, 2011, 38(2): 0204001.

    Chen Minghui, Ding Zhihua, Tao Yuanhao, et al.. Development of broad-band high-seed linearized swept laser source[J]. Chinese J Lasers, 2011, 38(2): 0204001.

[18] 陈明惠, 丁志华, 吴彤, 等. 傅里叶域锁模扫频激光光源[J]. 光学学报, 2011, 31(6): 0614002.

    Chen Minghui, Ding Zhihua, Wu Tong, et al.. Fourier-domain-mode locking swept laser source[J]. Acta Optica Sinica, 2011, 31(6): 0614002.

[19] Y Takahashi, A Neogi, H Kawaguchi. Polarization-dependent nonlinear gain in semiconductor lasers[J]. IEEE J Quantum Electron, 1998, 34(9): 1660-1672.

[20] J A Izatt, M R Hee, G M Owen, et al.. Optical coherence microscopy in scattering media[J]. Opt Lett, 1994, 19(8): 590-592.

[21] J A Izatt, M D Kulkarni, H Wang, et al.. Optical coherence tomography and microscopy in gastrointestinal tissues[J]. Journal of Selected Topics in Quantum Electronics, 1996, 2(4): 1017-1028.

[22] J T Fredrich. 3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 1999, 24(7): 551-561.

尚怀嬴, 霍力, 吴远鹏, 娄采云. 单偏振半导体光放大器扫频光相干成像系统[J]. 中国激光, 2014, 41(11): 1102002. Shang Huaiying, Huo Li, Wu Yuanpeng, Lou Caiyun. Optical Coherence Imaging System Based on a Polarization-Dependent Semiconductor Optical Amplifier-Enabled Swept Laser[J]. Chinese Journal of Lasers, 2014, 41(11): 1102002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!