中国激光, 2021, 48 (5): 0501006, 网络出版: 2021-03-12   

光纤激光器被动锁模技术研究进展 下载: 3143次特邀综述

Research Progress of Mode-Locked Fiber Lasers Based on Saturable Absorbers
作者单位
北京工业大学理学部, 北京 100124
引用该论文

董自凯, 宋晏蓉. 光纤激光器被动锁模技术研究进展[J]. 中国激光, 2021, 48(5): 0501006.

Zikai Dong, Yanrong Song. Research Progress of Mode-Locked Fiber Lasers Based on Saturable Absorbers[J]. Chinese Journal of Lasers, 2021, 48(5): 0501006.

参考文献

[1] Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838.

[2] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 2013, 7(11): 868-874.

[3] Fu W, Wright L G, Sidorenko P, et al. Several new directions for ultrafast fiber lasers[J]. Optics Express, 2018, 26(8): 9432-9463.

[4] Zhao L M, Tang D Y. Generation of 15-nJ bunched noise-like pulses with 93 nm bandwidth in an erbium-doped fiber ring laser[J]. Applied Physics B, 2006, 83(4): 553-557.

[5] Han X X. Nanotube-mode-locked fiber laser delivering dispersion-managed or dissipative solitons[J]. Journal of Lightwave Technology, 2014, 32(8): 1472-1476.

[6] Chong A, Buckley J, Renninger W, et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 2006, 14(21): 10095-10100.

[7] Zhao L M, Tang D Y, Wu J. Gain-guided soliton in a positive group-dispersion fiber laser[J]. Optics Letters, 2006, 31(12): 1788-1790.

[8] Chen S H, Yi L, Guo D S, et al. Self-similar evolutions of parabolic, Hermite-Gaussian, and hybrid optical pulses: universality and diversity[J]. Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(1 Pt 2): 016622.

[9] Du Y Q, Shu X W. Pulse dynamics in all-normal dispersion ultrafast fiber lasers[J]. Journal of the Optical Society of America B, 2017, 34(3): 553-558.

[10] Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 2012, 6(2): 84-92.

[11] Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

[12] Paschotta R, Keller U. Passive mode locking with slow saturable absorbers[J]. Applied Physics B, 2001, 73(7): 653-662.

[13] Zhang B T, Liu J, Wang C, et al. Recent progress in 2D material-based saturable absorbers for all solid-state pulsed bulk lasers[J]. Laser & Photonics Reviews, 2020, 14(2): 1900240.

[14] Zhao W, Chen G W, Li W L, et al. All-fiber saturable absorbers for ultrafast fiber lasers[J]. IEEE Photonics Journal, 2019, 11(5): 1-19.

[15] Chédot C, Lecaplain C, Idlahcen S, et al. Mode-locked ytterbium-doped fiber lasers: new perspectives[J]. Fiber and Integrated Optics, 2008, 27(5): 341-354.

[16] 周佳琦, 潘伟巍, 张磊, 等. 非线性环路反射镜锁模光纤激光器的研究进展[J]. 中国激光, 2019, 46(5): 0508013.

    Zhou J Q, Pan W W, Zhang L, et al. Research advances in mode-locked fiber lasers based on nonlinear loop mirror[J]. Chinese Journal of Lasers, 2019, 46(5): 0508013.

[17] Liu Z W, Ziegler Z M, Wright L G, et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 2017, 4(6): 649-654.

[18] Kurtner F X, der Au J A, Keller U. Mode-locking with slow and fast saturable absorbers-what's the difference?[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4(2): 159-168.

[19] Liu X, Guo Q, Qiu D J. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics[J]. Advanced Materials, 2017, 29(14): 1605886.

[20] Xu H Y, Wan X J, Ruan Q J, et al. Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1-9.

[21] Li D J, Tang D Y, Zhao L M, et al. Mechanism of dissipative-soliton-resonance generation in passively mode-locked all-normal-dispersion fiber lasers[J]. Journal of Lightwave Technology, 2015, 33(18): 3781-3787.

[22] Cheng Z C, Li H H, Wang P. Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers[J]. Optics Express, 2015, 23(5): 5972-5981.

[23] Luo A P, Luo Z C, Liu H, et al. Noise-like pulse trapping in a figure-eight fiber laser[J]. Optics Express, 2015, 23(8): 10421-10427.

[24] Sidorenko P, Fu W, Wright L G, et al. Self-seeded, multi-megawatt, Mamyshev oscillator[J]. Optics Letters, 2018, 43(11): 2672-2675.

[25] Wang G Z. Baker-Murray A A, Blau W J. Saturable absorption in 2D nanomaterials and related photonic devices[J]. Laser & Photonics Reviews, 2019, 13(7): 1800282.

[26] Zhao L M, Lu C, Tam H Y, et al. Gain dispersion for dissipative soliton generation in all-normal-dispersion fiber lasers[J]. Applied Optics, 2009, 48(27): 5131-5137.

[27] 赵慧, 柴路, 欧阳春梅, 等. 长腔全正色散锁模掺镱光纤激光器[J]. 中国激光, 2010, 37(12): 2958-2963.

    Zhao H, Chai L, Ouyang C M, et al. A long-cavity all-normal-dispersion mode-locked Yb-doped fiber laser[J]. Chinese Journal of Lasers, 2010, 37(12): 2958-2963.

[28] Luo J L, Ge Y Q, Tang D Y, et al. Mechanism of spectrum moving, narrowing, broadening, and wavelength switching of dissipative solitons in all-normal-dispersion Yb-fiber lasers[J]. IEEE Photonics Journal, 2014, 6(1): 1-8.

[29] Szczepanek J, Kardaś T M, Radzewicz C, et al. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers[J]. Optics Letters, 2017, 42(3): 575-578.

[30] Zhou J Q, Pan W W, Gu X J, et al. Dissipative-soliton generation with nonlinear-polarization-evolution in a polarization maintaining fiber[J]. Optics Express, 2018, 26(4): 4166-4171.

[31] Radnatarov D, Khripunov S, Kobtsev S, et al. Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution[J]. Optics Express, 2013, 21(18): 20626-20631.

[32] Andral U, Si Fodil R, Amrani F, et al. Fiber laser mode locked through an evolutionary algorithm[J]. Optica, 2015, 2(4): 275.

[33] Baumeister T, Brunton S L, Nathan Kutz J. Deep learning and model predictive control for self-tuning mode-locked lasers[J]. Journal of the Optical Society of America B, 2018, 35(3): 617-626.

[34] Pu G Q, Yi L L, Zhang L, et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm[J]. Optica, 2019, 6(3): 362-369.

[35] Pu G, Yi L, Zhang L, et al. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis[J]. Light, Science & Applications, 2020, 9: 13.

[36] 魏志伟, 刘萌, 崔虎, 等. 超快光纤激光器中孤子瞬态动力学特性研究进展[J]. 激光与光电子学进展, 2019, 56(7): 070006.

    Wei Z W, Liu M, Cui H, et al. Recent progress of soliton transient dynamics in ultrafast fiber lasers[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070006.

[37] Jeong Y. Vazquez-Zuniga L A, Lee S, et al. On the formation of noise-like pulses in fiber ring cavity configurations[J]. Optical Fiber Technology, 2014, 20(6): 575-592.

[38] Santiago-Hernandez H, Pottiez O, Duran-Sanchez M, et al. Dynamics of noise-like pulsing at sub-ns scale in a passively mode-locked fiber laser[J]. Optics Express, 2015, 23(15): 18840-18849.

[39] Zhao J Q, Zhou J, Jiang Y Y, et al. Nonlinear absorbing-loop mirror in a holmium-doped fiber laser[J]. Journal of Lightwave Technology, 2020, 38(21): 6069-6075.

[40] Szczepanek J, Kardaś T M, Michalska M, et al. Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror[J]. Optics Letters, 2015, 40(15): 3500-3503.

[41] Aguergaray C. Broderick N G R, Erkintalo M, et al. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror[J]. Optics Express, 2012, 20(10): 10545-10551.

[42] Zhou J Q, Gu X J. 32 nJ 615 fs stable dissipative soliton ring cavity fiber laser with Raman scattering[J]. IEEE Photonics Technology Letters, 2016, 28(4): 453-456.

[43] Jiang T X, Cui Y F, Lu P, et al. All PM fiber laser mode locked with a compact phase biased amplifier loop mirror[J]. IEEE Photonics Technology Letters, 2016, 28(16): 1786-1789.

[44] Liu G Y, Jiang X H, Wang A M, et al. Robust 700 MHz mode-locked Yb: fiber laser with a biased nonlinear amplifying loop mirror[J]. Optics Express, 2018, 26(20): 26003-26008.

[45] Kojou J, Watanabe Y, Agrawal P, et al. Wavelength tunable Q-switch laser in visible region with Pr 3+-doped fluoride-glass fiber pumped by GaN diode laser[J]. Optics Communications, 2013, 290: 136-140.

[46] Nikkinen J, Härkönen A, Leino I, et al. Generation of sub-100 ps pulses at 532, 355, and 266 nm using a SESAM Q-switched microchip laser[J]. IEEE Photonics Technology Letters, 2017, 29(21): 1816-1819.

[47] Huang T, He Q, She X, et al. Study on thermal splicing of ZBLAN fiber to silica fiber[J]. Optical Engineering, 2016, 55(10): 106119.

[48] Luo Z Q, Ruan Q J, Zhong M, et al. Compact self-Q-switched green upconversion Er: ZBLAN all-fiber laser operating at 543.4 nm[J]. Optics Letters, 2016, 41(10): 2258-2261.

[49] Luo Z Q, Wu D D, Xu B, et al. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers[J]. Nanoscale, 2016, 8(2): 1066-1072.

[50] Li W S, Du T J, Lan J L, et al. 716 nm deep-red passively Q-switched Pr: ZBLAN all-fiber laser using a carbon-nanotube saturable absorber[J]. Optics Letters, 2017, 42(4): 671-674.

[51] Gaponenko M, Metz P W, Härkönen A, et al. SESAM mode-locked red praseodymium laser[J]. Optics Letters, 2014, 39(24): 6939-6941.

[52] Alessi A, Girard S, Morana A, et al. Structured blue emission in Bismuth doped fibers[J]. Optical Materials, 2018, 84: 663-667.

[53] Wu D D, Cai Z P, Zhong Y L, et al. Compact passive Q-switching Pr 3+-doped ZBLAN fiber laser with black phosphorus-based saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(1): 7-12.

[54] Luo S Y, Yan X G, Xu B, et al. Few-layer Bi2Se3-based passively Q-switched Pr: YLF visible lasers[J]. Optics Communications, 2018, 406: 61-65.

[55] Li W, Wu J, Guan X, et al. Efficient continuous-wave and short-pulse Ho 3+-doped fluorozirconate glass all-fiber lasers operating in the visible spectral range[J]. Nanoscale, 2018, 10(11): 5272-5279.

[56] Li W S, Zhu C H, Rong X F, et al. Bidirectional red-light passively Q-switched all-fiber ring lasers with carbon nanotube saturable absorber[J]. Journal of Lightwave Technology, 2018, 36(13): 2694-2701.

[57] Zhang Y X, Lu D Z, Yu H H, et al. Low-dimensional saturable absorbers in the visible spectral region[J]. Advanced Optical Materials, 2019, 7(1): 1800886.

[58] Zou J, Dong C, Wang H, et al. Towards visible-wavelength passively mode-locked lasers in all-fibre format[J]. Light, Science & Applications, 2020, 9: 61.

[59] He J, Tao L, Zhang H, et al. Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers[J]. Nanoscale, 2019, 11(6): 2577-2593.

[60] Gong C H, Hu K, Wang X P, et al. 2D nanomaterial arrays for electronics and optoelectronics[J]. Advanced Functional Materials, 2018, 28(16): 1706559.

[61] Gladush Y, Mkrtchyan A A, Kopylova D S, et al. Ionic liquid gated carbon nanotube saturable absorber for switchable pulse generation[J]. Nano Letters, 2019, 19(9): 5836-5843.

[62] Wang Y R, Zhang B T, Yang H, et al. Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror[J]. Journal of Lightwave Technology, 2019, 37(13): 2927-2931.

[63] Liu W, Pang L, Han H, et al. 70 fs mode-locked erbium-doped fiber laser with topological insulator[J]. Scientific Reports, 2016, 6: 19997.

[64] Zhang J, Ouyang H, Zheng X, et al. Ultrafast saturable absorption of MoS2 nanosheets under different pulse-width excitation conditions[J]. Optics Letters, 2018, 43(2): 243-246.

[65] Chen R Z, Zheng X, Jiang T. Broadband ultrafast nonlinear absorption and ultra-long exciton relaxation time of black phosphorus quantum dots[J]. Optics Express, 2017, 25(7): 7507-7519.

[66] Zhang M, Wu Q, Zhang F, et al. 2D black phosphorus saturable absorbers for ultrafast photonics[J]. Advanced Optical Materials, 2019, 7(1): 1800224.

[67] Tian Q Y, Yin P, Zhang T, et al. MXene Ti3C2Tx saturable absorber for passively Q-switched mid-infrared laser operation of femtosecond-laser-inscribed Er: Y2O3 ceramic channel waveguide[J]. Nanophotonics, 2020, 9(8): 2495-2503.

[68] Grinblat G, Abdelwahab I, Nielsen M P, et al. Ultrafast all-optical modulation in 2D hybrid perovskites[J]. ACS Nano, 2019, 13(8): 9504-9510.

[70] Set S Y, Yaguchi H, Tanaka Y, et al. Laser mode locking using a saturable absorber incorporating carbon nanotubes[J]. Journal of Lightwave Technology, 2004, 22(1): 51-56.

[71] Chen Y, Jiang G B, Chen S Q, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833.

[72] Jhon Y I, Koo J, Anasori B, et al. 2D materials: metallic MXene saturable absorber for femtosecond mode-locked lasers[J]. Advanced Materials, 2017, 29(40): 2496.

[73] Li P F, Chen Y, Yang T S, et al. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12759-12765.

[74] Chai T, Li X H, Feng T C, et al. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field[J]. Nanoscale, 2018, 10(37): 17617-17622.

[75] Xu N N, Ma P F, Fu S G, et al. Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations[J]. Nanophotonics, 2020, 9(9): 2783-2795.

[76] Lu L, Liang Z M, Wu L M, et al. Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability[J]. Laser & Photonics Reviews, 2018, 12(1): 1870012.

[77] Wang K, Zheng J, Huang H, et al. All-optical signal processing in few-layer bismuthene coated microfiber: towards applications in optical fiber systems[J]. Optics Express, 2019, 27(12): 16798-16811.

[78] Lee E J, Choi S Y, Jeong H, et al. Active control of all-fibre graphene devices with electrical gating[J]. Nature Communications, 2015, 6: 6851.

[79] Li D, Xue H, Qi M, et al. Graphene actively Q-switched lasers[J]. 2D Materials, 2017, 4(2): 025095.

[80] Li H H, Wang Z K, Li C, et al. Mode-locked Tm fiber laser using SMF-SIMF-GIMF-SMF fiber structure as a saturable absorber[J]. Optics Express, 2017, 25(22): 26546-26553.

[81] Fu S J, Sheng Q, Zhu X S, et al. Passive Q-switching of an all-fiber laser induced by the Kerr effect of multimode interference[J]. Optics Express, 2015, 23(13): 17255-17262.

[82] Wang Z K, Li L J, Wang D N, et al. Generation of pulse-width controllable dissipative solitons and bound solitons by using an all fiber saturable absorber[J]. Optics Letters, 2019, 44(3): 570-573.

[83] 余霞, 罗佳琪, 肖晓晟, 等. 高功率超快光纤激光器研究进展[J]. 中国激光, 2019, 46(5): 0508007.

    Yu X, Luo J Q, Xiao X S, et al. Research progress of high-power ultrafast fiber lasers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508007.

[84] Ma C Y, Khanolkar A, Zang Y M, et al. Ultrabroadband, few-cycle pulses directly from a Mamyshev fiber oscillator[J]. Photonics Research, 2020, 8(1): 65-69.

董自凯, 宋晏蓉. 光纤激光器被动锁模技术研究进展[J]. 中国激光, 2021, 48(5): 0501006. Zikai Dong, Yanrong Song. Research Progress of Mode-Locked Fiber Lasers Based on Saturable Absorbers[J]. Chinese Journal of Lasers, 2021, 48(5): 0501006.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!