激光与光电子学进展, 2021, 58 (8): 0828002, 网络出版: 2021-04-16   

基于连续小波系数的叶绿素a浓度估测模型 下载: 957次

Estimation Model of Chlorophyll-a Concentration Based on Continuous Wavelet Coefficient
作者单位
1 东华理工大学测绘工程学院, 江西 南昌 330013
2 流域生态与地理环境监测国家测绘地理信息局重点实验室, 江西 南昌 330013
3 广东省遥感与地理信息系统应用重点实验室, 广东省地理空间信息技术与应用公共实验室, 广东省遥感大数据应用工程技术研究中心, 广州地理研究所, 广东 广州 510070
引用该论文

彭咏石, 陈水森, 陈金月, 赵晶, 王重洋, 官云兰. 基于连续小波系数的叶绿素a浓度估测模型[J]. 激光与光电子学进展, 2021, 58(8): 0828002.

Yongshi Peng, Shuisen Chen, Jinyue Chen, Jing Zhao, Chongyang Wang, Yunlan Guan. Estimation Model of Chlorophyll-a Concentration Based on Continuous Wavelet Coefficient[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0828002.

参考文献

[1] 王明翠, 刘雪芹, 张建辉, 等. 湖泊富营养化评价方法及分级标准[J]. 中国环境监测, 2002, 18(5): 47-49.

    Wang M C, Liu X Q, Zhang J H, et al. Evaluate method and classification standard on lake eutrophication[J]. Environmental Monitoring in China, 2002, 18(5): 47-49.

[2] 秦伯强. 长江中下游浅水湖泊富营养化发生机制与控制途径初探[J]. 湖泊科学, 2002, 14(3): 193-202.

    Qin B Q. Approaches to mechanisms and control of eutrophication of shallow lakes in the middle and lower reaches of the Yangze River[J]. Journal of Lake Science, 2002, 14(3): 193-202.

[3] 杨锦坤, 陈楚群. 珠江口二类水体水色三要素的优化反演[J]. 热带海洋学报, 2007, 26(5): 15-20.

    Yang J K, Chen C Q. An optimal algorithm for retrieval of chlorophyll, suspended sediments and gelbstoff of caseⅡ waters in Zhujiang River estuary[J]. Journal of Tropical Oceanography, 2007, 26(5): 15-20.

[4] Göritz A, Berger S, Gege P, et al. Retrieval of water constituents from hyperspectral in situ measurements under variable cloud cover: a case study at lake stechlin (Germany)[J]. Remote Sensing, 2018, 10(2): 181.

[5] Beck R, Zhan S G, Liu H X, et al. Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations[J]. Remote Sensing of Environment, 2016, 178: 15-30.

[6] Keller S, Maier P, Riese F, et al. Hyperspectral data and machine learning for estimating CDOM, chlorophyll a, diatoms, green algae and turbidity[J]. International Journal of Environmental Research and Public Health, 2018, 15(9): 1881.

[7] 张棋斐, 吴志峰, 解学通, 等. 河口及近岸海域水体叶绿素浓度反演方法综述[J]. 生态科学, 2017, 36(5): 215-222.

    Zhang Q F, Wu Z F, Xie X T, et al. Research progress of the inversion algorithm of chlorophyll-a concentration in estuaries and coastal waters[J]. Ecological Science, 2017, 36(5): 215-222.

[8] 高玉蓉, 刘明亮, 吴志旭, 等. 应用实测光谱估算千岛湖夏季叶绿素a浓度[J]. 湖泊科学, 2012, 24(4): 553-561.

    Gao Y R, Liu M L, Wu Z X, et al. Chlorophyll-a concentration estimation with field spectra of summer water-body in Lake Qiandao[J]. Journal of Lake Sciences, 2012, 24(4): 553-561.

[9] O'Reilly J E, Maritorena S, Mitchell B G, et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research: Oceans, 1998, 103(C11): 24937-24953.

[10] 谢婷婷, 陈芸芝, 卢文芳, 等. 基于三波段生物光学模型反演闽江下游叶绿素a[J]. 激光与光电子学进展, 2020, 57(7): 071701.

    Xie T T, Chen Y Z, Lu W F, et al. Retrieval of chlorophyll-a in lower reaches of the Minjiang River via three-band bio-optical model[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071701.

[11] Labat D. Recent advances in wavelet analyses:part 1. A review of concepts[J]. Journal of Hydrology, 2005, 314(1/2/3/4): 275-288.

[12] 叶红云, 熊黑钢, 张芳, 等. 基于CWT的人类不同程度干扰下干旱区土壤有机质含量估算研究[J]. 激光与光电子学进展, 2019, 56(5): 051101.

    Ye H Y, Xiong H G, Zhang F, et al. CWT-based estimation of soil organic matter content in arid area under different human disturbance degrees[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051101.

[13] Gu X H, Wang Y C, Sun Q, et al. Hyperspectral inversion of soil organic matter content in cultivated land based on wavelet transform[J]. Computers and Electronics in Agriculture, 2019, 167: 105053.

[14] Yao X, Si H Y, Cheng T, et al. Hyperspectral estimation of canopy leaf biomass phenotype per ground area using a continuous wavelet analysis in wheat[J]. Frontiers in Plant Science, 2018, 9: 1360.

[15] Rivard B, Feng J, Gallie A, et al. Continuous wavelets for the improved use of spectral libraries and hyperspectral data[J]. Remote Sensing of Environment, 2008, 112(6): 2850-2862.

[16] Ampe E M, Hestir E L, Bresciani M, et al. A wavelet approach for estimating chlorophyll-a from inland waters with reflectance spectroscopy[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 89-93.

[17] 朱忆秋. 广东省典型水库枯水期营养状态与浮游植物群落结构特征的研究[D]. 广州: 暨南大学, 2018: 3- 4.

    Zhu YQ. Trophic status and phytoplankton assemblages of typical reservoirs in Guangdong Province in a dry season[D]. Guangzhou: Jinan University, 2018: 3- 4.

[18] 唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ: 水面以上测量法[J]. 遥感学报, 2004, 8(1): 37-44.

    Tang J W, Tian G L, Wang X Y, et al. The methods of water spectra measurement and analysis Ⅰ: above-water method[J]. Journal of Remote Sensing, 2004, 8(1): 37-44.

[19] 陈宇炜, 高锡云. 浮游植物叶绿素a含量测定方法的比较测定[J]. 湖泊科学, 2000, 12(2): 185-188.

    Chen Y W, Gao X Y. Comparison of two methods for phytoplankton chlorophyll-a concentration measurement[J]. Journal of Lake Science, 2000, 12(2): 185-188.

[20] Wang Z L, Chen J X, Fan Y F, et al. Evaluating photosynthetic pigment contents of maize using UVE-PLS based on continuous wavelet transform[J]. Computers and Electronics in Agriculture, 2020, 169: 105160.

[21] He R Y, Li H, Qiao X J, et al. Using wavelet analysis of hyperspectral remote-sensing data to estimate canopy chlorophyll content of winter wheat under stripe rust stress[J]. International Journal of Remote Sensing, 2018, 39(12): 4059-4076.

[22] 余哲修, 张超, 黄田, 等. 剑湖湿地中菰的叶绿素含量高光谱估算模型研究[J]. 湿地科学, 2018, 16(6): 742-748.

    Yu Z X, Zhang C, Huang T, et al. Hyperspectral estimation model for chlorophyll content of Zizania Caduciflora in Jianhu wetlands[J]. Wetland Science, 2018, 16(6): 742-748.

[23] 方圣辉, 乐源, 梁琦, 等. 基于连续小波分析的混合植被叶绿素反演[J]. 武汉大学学报·信息科学版, 2015, 40(3): 296-302.

    Fang S H, Le Y, Liang Q, et al. Retrieval of chlorophyll content using continuous wavelet analysis across a range of vegetation species[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 296-302.

[24] Liu H J, Li M Z, Zhang J Y, et al. Estimation of chlorophyll content in maize canopy using wavelet denoising and SVR method[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(6): 132-137.

[25] 金秀, 朱先志, 李绍稳, 等. 基于梯度提升树的土壤速效磷高光谱回归预测方法[J]. 激光与光电子学进展, 2019, 56(13): 131102.

    Jin X, Zhu X Z, Li S W, et al. Predicting soil available phosphorus by hyperspectral regression method based on gradient boosting decision tree[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131102.

[26] Wang Z M, Kawamura K, Sakuno Y, et al. Retrieval of chlorophyll-a and total suspended solids using iterative stepwise elimination partial least squares (ISE-PLS) regression based on field hyperspectral measurements in irrigation ponds in Higashihiroshima, Japan[J]. Remote Sensing, 2017, 9(3): 264.

[27] Song K S, Li L, Tedesco L P, et al. Remote estimation of chlorophyll-a in turbid inland waters: three-band model versus GA-PLS model[J]. Remote Sensing of Environment, 2013, 136: 342-357.

[28] 安如, 刘影影, 曲春梅, 等. NDCI法Ⅱ类水体叶绿素a浓度高光谱遥感数据估算[J]. 湖泊科学, 2013, 25(3): 437-444.

    An R, Liu Y Y, Qu C M, et al. Estimation of chlorophyll-a concentration of caseⅡ waters from hyperspectral remote sensing data in NDCI method[J]. Journal of Lake Sciences, 2013, 25(3): 437-444.

彭咏石, 陈水森, 陈金月, 赵晶, 王重洋, 官云兰. 基于连续小波系数的叶绿素a浓度估测模型[J]. 激光与光电子学进展, 2021, 58(8): 0828002. Yongshi Peng, Shuisen Chen, Jinyue Chen, Jing Zhao, Chongyang Wang, Yunlan Guan. Estimation Model of Chlorophyll-a Concentration Based on Continuous Wavelet Coefficient[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0828002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!