光学学报, 2021, 41 (8): 0823016, 网络出版: 2021-04-10   

基于超表面的量子态制备与操控研究进展 下载: 2053次特邀综述

Progress of Metasurface-Enabled Preparation and Manipulation of Quantum States
陈烈裕 1,2李占成 1,2程化 1,2,*田建国 1,2陈树琪 1,2,3,4,**
作者单位
1 南开大学物理科学学院, 天津 300071
2 南开大学泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300457
3 山西大学极端光学协同创新中心, 山西 太原 030006
4 山东师范大学光场调控及应用协同创新中心, 山东 济南 250358
引用该论文

陈烈裕, 李占成, 程化, 田建国, 陈树琪. 基于超表面的量子态制备与操控研究进展[J]. 光学学报, 2021, 41(8): 0823016.

Lieyu Chen, Zhancheng Li, Hua Cheng, Jianguo Tian, Shuqi Chen. Progress of Metasurface-Enabled Preparation and Manipulation of Quantum States[J]. Acta Optica Sinica, 2021, 41(8): 0823016.

参考文献

[1] Yu T, Eberly J H. Finite-time disentanglement via spontaneous emission[J]. Physical Review Letters, 2004, 93(14): 140404.

[2] Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(6660): 575-579.

[3] Polkinghorne R E S, Ralph T C. Continuous variable entanglement swapping[J]. Physical Review Letters, 1999, 83(11): 2095-2099.

[4] Huang Y P, Kumar P. Antibunched emission of photon pairs via quantum Zeno blockade[J]. Physical Review Letters, 2012, 108(3): 030502.

[5] Brown R H, Twiss R Q. Correlation between photons in two coherent beams of light[J]. Nature, 1956, 177(4497): 27-29.

[6] He Y M, Clark G, Schaibley J R, et al. Single quantum emitters in monolayer semiconductors[J]. Nature Nanotechnology, 2015, 10(6): 497-502.

[7] Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 1987, 59(18): 2044-2046.

[8] Hijlkema M, Weber B, Specht H P, et al. A single-photon server with just one atom[J]. Nature physics, 2007, 3(4): 253-255.

[9] Basché T, Moerner W E, Orrit M, et al. Photon antibunching in the fluorescence of a single dye molecule trapped in a solid[J]. Physical Review Letters, 1992, 69(10): 1516-1519.

[10] Jungwirth N R, Calderon B, Ji Y, et al. Temperature dependence of wavelength selectable zero-phonon emission from sngle defects in hexagonal Boron Nitride[J]. Nano Letters, 2016, 16(10): 6052-6057.

[11] Kurtsiefer C, Mayer S, Zarda P, et al. Stable solid-state source of single photons[J]. Physical Review Letters, 2000, 85(2): 290-293.

[12] . Mason, et al. Quantum correlation among photons from a single quantum dot at room temperature[J]. Nature, 2000, 406(6799): 968-970.

[13] Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device[J]. Science, 2000, 290(5500): 2282-2285.

[14] Curto A G, Volpe G, Taminiau T H, et al. Unidirectional emission of a quantum dot coupled to a nanoantenna[J]. Science, 2010, 329(5994): 930-933.

[15] Koenderink A F. Single-photon nanoantennas[J]. ACS Photonics, 2017, 4(4): 710-722.

[16] Tillmann M. Daki B, Heilmann R, et al. Experimental boson sampling[J]. Nature Photonics, 2013, 7(7): 540-544.

[17] Broome M A, Fedrizzi A, Rahimi-Keshari S, et al. Photonic boson sampling in a tunable circuit[J]. Science, 2013, 339(6121): 794-798.

[18] Crespi A, Osellame R, Ramponi R, et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling[J]. Nature Photonics, 2013, 7(7): 545-549.

[19] Wang H, Li W, Jiang X, et al. Toward scalable boson sampling with photon loss[J]. Physical Review Letters, 2018, 120(23): 230502.

[20] Wang H, Qin J, Ding X, et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 10(14)-dimensional Hilbert space[J]. Physical Review Letters, 2019, 123(25): 250503.

[21] Liu Y, Chen T Y, Wang J, et al. Decoy-state quantum key distribution with polarized photons over 200 km[J]. Optics Express, 2010, 18(8): 8587-8594.

[22] Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental entanglement swapping: entangling photons that never interacted[J]. Physical Review Letters, 1998, 80(18): 3891-3894.

[23] Zhong H S, Li Y, Li W, et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion[J]. Physical Review Letters, 2018, 121(25): 250505.

[24] Silverstone J W, Bonneau D, Ohira K, et al. On-chip quantum interference between silicon photon-pair sources[J]. Nature Photonics, 2014, 8(2): 104-108.

[25] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307.

[26] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345.

[27] Chen S Q, Li Z, Zhang Y B, et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics[J]. Advanced Optical Materials, 2018, 6(13): 1800104.

[28] Cui T J, Liu S, Li L L. Information entropy of coding metasurface[J]. Light, Science & Applications, 2016, 5(11): e16172.

[29] Liu S, Cui T J, Zhang L, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Advanced Science, 2016, 3(10): 1600156.

[30] Yu N, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328-6333.

[31] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807.

[32] Lin J, Genevet P, Kats M A, et al. Nanostructured holograms for broadband manipulation of vector beams[J]. Nano Letters, 2013, 13(9): 4269-4274.

[33] Liu L X, Zhang X Q, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 2014, 26(29): 5031-5036.

[34] Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces[J]. Nature Communications, 2016, 7: 10367.

[35] Ye W, Zeuner F, Li X, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 2016, 7: 11930.

[36] Tran T T, Wang D Q, Xu Z Q, et al. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays[J]. Nano Letters, 2017, 17(4): 2634-2639.

[37] Kan Y H. Andersen S K H, Ding F, et al. Metasurface-enabled generation of circularly polarized single photons[J]. Advanced Materials, 2020, 32(16): 1907832.

[38] Bao YJ, Lin QL, Su RB, et al., 2020, 6(31): eaba8761.

[39] Li L, Liu Z, Ren X, et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 2020, 368(6498): 1487-1490.

[40] Marino G, Solntsev A S, Xu L, et al. Spontaneous photon-pair generation from a dielectric nanoantenna[J]. Optica, 2019, 6(11): 1416-1422.

[41] Stav T, Faerman A, Maguid E, et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J]. Science, 2018, 361(6407): 1101-1104.

[42] Wang K, Titchener J G, Kruk S S, et al. Quantum metasurface for multiphoton interference and state reconstruction[J]. Science, 2018, 361(6407): 1104-1108.

[43] Georgi P, Massaro M, Luo K H, et al. Metasurface interferometry toward quantum sensors[J]. Light, Science & Applications, 2019, 8: 70.

[44] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 2016, 79(7): 076401.

[45] Aieta F, Genevet P, Yu N, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Letters, 2012, 12(3): 1702-1706.

[46] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

[47] Shalaev M I, Sun J B, Tsukernik A, et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode[J]. Nano Letters, 2015, 15(9): 6261-6266.

[48] Liu X L, Starr T, Starr A F, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Physical Review Letters, 2010, 104(20): 207403.

[49] Yu N F, Genevet P, Aieta F, et al. Flat optics: controlling wavefronts with optical antenna metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 4700423.

[50] Zheludev N I, Kivshar Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11): 917-924.

[51] Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Photonics, 2014, 8(12): 889-898.

[52] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150.

[53] Liu Z C, Li Z C, Liu Z, et al. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle[J]. ACS Photonics, 2017, 4: 2061.

[54] Li J X, Yu P, Tang C C, et al. Bidirectional perfect absorber using free substrate plasmonic metasurfaces[J]. Advanced Optical Materials, 2017, 5(12): 1700152.

[55] Yu P, Li J, Tang C, et al. Controllable optical activity with non-chiral plasmonic metasurfaces[J]. Light, Science & Applications, 2016, 5(7): e16096.

[56] Sun S, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229.

[57] Zheng G, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312.

[58] Yue F Y, Wen D D, Xin J T, et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 2016, 3(9): 1558-1563.

[59] Li Z C, Liu W W, Cheng H, et al. Simultaneous generation of high-efficiency broadband asymmetric anomalous refraction and reflection waves with few-layer anisotropic metasurface[J]. Scientific Reports, 2016, 6: 35485.

[60] Cheng H, Liu Z C, Chen S Q, et al. Emergent functionality and controllability in few-layer metasurfaces[J]. Advanced Materials, 2015, 27(36): 5410-5421.

[61] Li Z C, Liu W W, Cheng H, et al. Few-layer metasurfaces with arbitrary scattering properties[J]. Science China Physics, Mechanics Astronomy, 2020, 63(8): 284202.

[62] Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139-152.

[63] Kruk S, Kivshar Y. Functional meta-optics and nanophotonics governed by Mie resonances[J]. ACS Photonics, 2017, 4(11): 2638-2649.

[64] Balthasar Mueller J P, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901.

[65] Khorasaninejad M, Zhu A Y, Roques-Carmes C, et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 2016, 16(11): 7229-7234.

[66] Khorasaninejad M, Shi Z, Zhu A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824.

[67] Lin D M, Fan P Y, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302.

[68] Arbabi A, Horie Y, Ball A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6(1): 7069.

[69] Wang L, Kruk S, Tang H Z, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12): 1504-1505.

[70] Yang B, Liu W W, Li Z C, et al. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels[J]. Advanced Optical Materials, 2018, 6(4): 1701009.

[71] Yang B, Liu W W, Li Z C, et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces[J]. Nano Letters, 2019, 19(7): 4221-4228.

[72] Zhang Y B, Liu W W, Li Z C, et al. High-quality-factor multiple Fano resonances for refractive index sensing[J]. Optics Letters, 2018, 43(8): 1842-1845.

[73] Liu W W, Li Z C, Cheng H, et al. Metasurface enabled wide-angle Fourier lens[J]. Advanced Materials, 2018, 30(23): 1706368.

[74] Liu W W, Li Z C, Li Z, et al. Energy-tailorable spin-selective multifunctional metasurfaces with full Fourier components[J]. Advanced Materials, 2019, 31(32): 1901729.

[75] Zuo R Z, Liu W W, Cheng H, et al. Breaking the diffraction limit with radially polarized light based on dielectric metalenses[J]. Advanced Optical Materials, 2018, 6(21): 1800795.

[76] Marino G, Gigli C, Rocco D, et al. Zero-order second harmonic generation from AlGaAs-on-insulator metasurfaces[J]. ACS Photonics, 2019, 6(5): 1226-1231.

[77] Wang L, Kruk S, Koshelev K, et al. Nonlinear wavefront control with all-dielectric metasurfaces[J]. Nano Letters, 2018, 18(6): 3978-3984.

[78] Choy J T, Bulu I. Hausmann B J M, et al. Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings[J]. Applied Physics Letters, 2013, 103(16): 161101.

[79] Eisaman M D, Fan J, Migdall A, et al. Single-photon sources and detectors[J]. The Review of Scientific Instruments, 2011, 82(7): 071101.

[80] Lodahl P, Mahmoodian S, Stobbe S, et al. Chiral quantum optics[J]. Nature, 2017, 541(7638): 473-480.

[81] Javadi A, Ding D P, Appel M H, et al. Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide[J]. Nature Nanotechnology, 2018, 13(5): 398-403.

[82] Ortner G, Bayer M, Larionov A, et al. Fine structure of excitons in InAs/GaAs coupled auantum dots: a sensitive test of electronic coupling[J]. Physical Review Letters, 2003, 90(8): 086404.

[83] Braukmann D, Popov V P, Glaser E R, et al. Anisotropies in the linear polarization of vacancy photoluminescence in diamond induced by crystal rotations and strong magnetic fields[J]. Physical Review B, 2018, 97(12): 125426.

[84] Claudon J, Bleuse J, Malik N S, et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire[J]. Nature Photonics, 2010, 4(3): 174-177.

[85] Heeg K P, Wille H C, Schlage K, et al. Vacuum-assisted generation and control of atomic coherences at X-ray energies[J]. Physical Review Letters, 2013, 111(7): 073601.

[86] Agarwal G S. Anisotropic vacuum-induced interference in decay channels[J]. Physical Review Letters, 2000, 84(24): 5500-5503.

[87] Yannopapas V, Paspalakis E, Vitanov N V. Plasmon-induced enhancement of quantum interference near metallic nanostructures[J]. Physical Review Letters, 2009, 103(6): 063602.

[88] Li G X, Li F L, Zhu S Y. Quantum interference between decay channels of a three-level atom in a multilayer dielectric medium[J]. Physical Review A, 2001, 64: 013819.

[89] Jha P K, Ni X J, Wu C H, et al. Metasurface-enabled remote quantum interference[J]. Physical Review Letters, 2015, 115(2): 025501.

[90] 杨渤, 程化, 陈树琪, 等. 基于傅里叶分析的超表面多维光场调控[J]. 光学学报, 2019, 39(1): 0126005.

    Yang B, Cheng H, Chen S Q, et al. Multi-dimensional manipulation of optical field by metasurfaces based on Fourier analysis[J]. Acta Optica Sinica, 2019, 39(1): 0126005.

[91] Chen S Q, Li Z C, Liu W W, et al. From single-dimensional to multidimensional manipulation of optical waves with metasurfaces[J]. Advanced Materials, 2019, 31(16): 1802458.

[92] Chen S Q, Liu W W, Li Z C, et al. Metasurface-empowered optical multiplexing and multifunction[J]. Advanced Materials, 2020, 32(3): 1805912.

[93] Poddubny A N, Iorsh I V, Sukhorukov A A. Generation of photon-plasmon quantum states in nonlinear hyperbolic metamaterials[J]. Physical Review Letters, 2016, 117(12): 123901.

[94] Lenzini F, Poddubny A N, Titchener J, et al. Direct characterization of a nonlinear photonic circuit's wave function with laser light[J]. Light, Science & Applications, 2018, 7: 17143.

[95] Bekenstein R, Pikovski I, Pichler H, et al. Quantum metasurfaces with atom arrays[J]. Nature Physics, 2020, 16(6): 676-681.

[96] James D F V, Kwiat P G, Munro W J, et al. Measurement of qubits[J]. Physical Review A, 2001, 64: 052312.

[97] Jack B, Leach J, Ritsch H, et al. Precise quantum tomography of photon pairs with entangled orbital angular momentum[J]. New Journal of Physics, 2009, 11(10): 103024.

[98] Titchener J G, Gräfe M, Heilmann R, et al. Scalable on-chip quantum state tomography[J]. Npj Quantum Information, 2018, 4(1): 19.

[99] Giovannetti V, Lloyd S, Maccone L. Advances in quantum metrology[J]. Nature Photonics, 2011, 5(4): 222-229.

[100] Li Z C, Liu W W, Cheng H, et al. Manipulation of the photonic spin Hall effect with high efficiency in gold-nanorod-based metasurfaces[J]. Advanced Optical Materials, 2017, 5(20): 1700413.

[101] Li Z, Liu W W, Geng G Z, et al. Multiplexed nondiffracting nonlinear metasurfaces[J]. Advanced Functional Materials, 2020, 30(23): 1910744.

[102] Zhang Y B, Li Z C, Liu W W, et al. Spin-selective and wavelength-selective demultiplexing based on waveguide-integrated all-dielectric metasurfaces[J]. Advanced Optical Materials, 2019, 7(6): 1801273.

[103] Cheng H, Wei X Y, Yu P, et al. Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces[J]. Applied Physics Letters, 2017, 110(17): 171903.

[104] Ma M L, Li Z, Liu W W, et al. Optical information multiplexing with nonlinear coding metasurfaces[J]. Laser & Photonics Reviews, 2019, 13(7): 1900045.

[105] Li Z, Liu W W, Li Z C, et al. Tripling the capacity of optical vortices by nonlinear metasurface[J]. Laser & Photonics Reviews, 2018, 12(11): 1800164.

[106] Li Z C, Liu W W, Cheng H, et al. Spin-selective full-dimensional manipulation of optical waves with chiral mirror[J]. Advanced Materials, 2020, 32(26): 1907983.

陈烈裕, 李占成, 程化, 田建国, 陈树琪. 基于超表面的量子态制备与操控研究进展[J]. 光学学报, 2021, 41(8): 0823016. Lieyu Chen, Zhancheng Li, Hua Cheng, Jianguo Tian, Shuqi Chen. Progress of Metasurface-Enabled Preparation and Manipulation of Quantum States[J]. Acta Optica Sinica, 2021, 41(8): 0823016.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!