光学学报, 2018, 38 (3): 0328016, 网络出版: 2018-03-20   

基于混沌激光干涉的分布式光纤声音传感 下载: 559次

Distributed Optical Fiber Acoustic Sensing Based on Chaotic Laser Interference
作者单位
1 太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
2 煤与煤层气共采国家重点实验室, 山西 晋城 048000
摘要
提出了一种基于混沌激光干涉的分布式光纤声音传感系统, 利用外腔反馈式半导体混沌激光作为传感光源, 借助非等长的马赫-曾德尔双臂引入干涉光程差, 通过直线型Sagnac结构克服了环形干涉系统的互易效应, 利用频谱的零频点实现了声音信号的分布式定位。实验结果表明, 该系统可实时提取1 kHz的单音信号及200~900 Hz频率范围内的语音信号。与传统的宽带放大自发辐射激光相比, 基于混沌激光干涉的传感系统具有更好的声音频响曲线、更高的检测灵敏度以及均匀的平面指向性, 并在12 km长的单模光纤上实现了宽谱声音定位, 为分布式光纤声音传感系统提供了一种新的灵敏度提升方案。
Abstract
A distributed optical fiber acoustic sensing system based on chaotic laser interference is proposed, which uses the external cavity feedback semiconductor chaotic laser as the sensing light source, and the non-equal length of Mach-Zehnder arms for the introduction of the interference optical path difference. The reciprocal effect of the annular interference system is overcome by the linear Sagnac structure. The spectral null-frequency point is applied to realize the distributed location of sound signals.The experimental results show that, this system can real-time extract the single-tone signal with a frequency of 1 kHz and the voice signal in the frequency range of 200-900 Hz. Compared with the traditional broadband amplified spontaneous emission laser, this acoustic sensing system based on chaotic laser interference has a better sound frequency response curve, a higher detection sensitivity and a uniform plane directivity. Moreover, a broad-spectrum sound positioning in a 12 km single-mode fiber is achieved, which provides a new sensitivity enhancement solution for the distributed optical fiber acoustic sensing system.
参考文献

[1] 唐波, 黄俊斌, 顾宏灿, 等. 分布反馈式光纤激光水听器的声压灵敏度频率响应特性[J]. 光学学报, 2017, 37(4): 0406001.

    Tang B, Huang J B, Gu H C, et al. Frequency response characteristics of sound pressure sensitivity of distributed feedback fiber laser hydrophone[J]. Acta Optica Sinica, 2017, 37(4): 0406001.

[2] Furstenau N, Horack H, Schmidt W. Extrinsic Fabry-Perot interferometer fiber-optic microphone[J]. IEEE Transactions on Instrumentation and Measurement, 1998, 47(1): 138-142.

[3] Tsai C L, Fann C S, Wang S H, et al. Paramagnetic oxygen measurement using an optical-fiber microphone[J]. Sensors and Actuators B: Chemical, 2001, 73(2/3): 211-215.

[4] Konlel H J, Paschereit C O, Rhle I. A fiber-optical microphone based on a Fabry-Perot interferometer applied for thermo-acoustic measurements[J]. Measurement Science and Technology, 2010, 21(1): 209-213.

[5] 樊茁, 王双, 刘铁根, 等. 基于双可调谐激光器的光纤法布里-珀罗声振动传感解调系统研究[J]. 激光与光电子学进展, 2016, 53(4): 042801.

    Fan Z, Wang S, Liu T G, et al. Research of optical fiber Fabry-Perot acoustic vibration sensing demodulation system based on dual tunable lasers[J]. Laser & Optoelectronics Progress, 2016, 53(4): 042801.

[6] 王晓章, 蒋军彪, 李毅, 等. 冲击对Sagnac光纤干涉仪性能的影响[J]. 中国激光, 2017, 44(7): 0706003.

    Wang X Z, Jiang J B, Li Y, et al. Influence of impact on the performance of Sagnac fiber interferometer[J]. Chinese Journal of Lasers, 2017, 44(7): 0706003.

[7] 吴东方, 贾波. 基于M-Z动态干涉仪的全光纤麦克风研究[J]. 传感技术学报, 2007, 20(7): 1528-1530.

    Wu D F, Jia B. Theoretical and experimental research of all-fiber microphone based on M-Z interferometer[J]. Chinese Journal of Sensors and Actuators, 2007, 20(7): 1528-1530.

[8] Sun A, Semenova Y L, Farrell G. A novel highly sensitive optical fiber microphone based on single mode-multimode-single mode structure[J]. Microwave & Optical Technology Letters, 2011, 53(2): 442-445.

[9] Wu Y, Yu C B, Wu F, et al. A highly sensitive fiber-optic microphone based on graphene oxide membrane[J]. Journal of Lightwave Technology, 2017, 35(19): 4344-4349.

[10] Huang S C, Lin W W, Tsai M T, et al. Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks[J]. Sensors and Actuators A: Physical, 2007, 135(2): 570-579.

[11] Wang B J, Pi S H, Jia B, et al. Location performance fading for multiple disturbances in distributed Sagnac optical fiber interferometer[J]. Microwave & Optical Technology Letters, 2015, 57(10): 2294-2298.

[12] Ye Z, Wang J, Wang C, et al. A positioning algorithm realized multilateration for distributed fiber-optic sensor[J]. Microwave & Optical Technology Letters, 2016, 58(12): 2913-2917.

[13] 王云才. 混沌激光的产生与应用[J]. 激光与光电子学进展, 2009, 46(4): 13-21.

    Wang Y C. Generation and applications of chaotic laser[J]. Laser & Optoelectronics Progress, 2009, 46(4): 13-21.

[14] 颜森林. 半导体激光器混沌双向保密通信系统理论研究[J]. 中国激光, 2005, 32(11): 1503-1509.

    Yan S L. Theoretical studies on chaotic semiconductor laser dual-directional secure communication system[J]. Chinese Journal of Lasers, 2005, 32(11): 1503-1509.

[15] 杨海波, 吴正茂, 唐曦, 等. 反馈强度对外腔反馈半导体激光器混沌熵源生成的随机数序列性能的影响[J]. 物理学报, 2015, 64(8): 084204.

    Yang H B, Wu Z M, Tang X, et al. Influence of feedback strength on the characteristics of the random number sequence extracted from an external-cavity feedback semiconductor laser[J]. Acta Physica Sinica, 2015, 64(8): 084204.

[16] Jiang N, Liu D, Zhang C F, et al. Modeling and simulation of chaos-based security-enhanced WDM-PON[J]. IEEE Photonics Technology Letter, 2013, 25(19): 1912-1915.

[17] Mimuro M, Suzuki K, Imai Y. Coherence effect on temperature sensing based on periodic chaos synchronization using optical fiber ring resonators[C]. SPIE, 2005, 5855: 795-798.

[18] Jáuregui C, López-Higuera J M, Cobo A, et al. Multiparameter sensor based on a chaotic fiber-ring resonator[J]. Journal of the Optical Society of America B, 2006, 23(10): 2024-2031.

[19] Jáuregui C, Quintela A, Lomer M, et al. Optical fiber sensor based on a chaotic fiber ring resonator[C]∥Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components, 2005, 23(10): 329-334.

[20] 单超, 方捻, 王陆唐, 等. 混沌光纤围栏系统及其入侵定位方法[J]. 光学学报, 2010, 30(2): 335-339.

    Shan C, Fang N, Wang L T, et al. Chaotic fiber fence system and intrusion location method[J]. Acta Optica Sinica, 2010, 30(2): 335-339.

[21] Fang N, Qin H J, Wang L T, et al. Experimental investigation of sensitivity improvement of chaotic fiber ring laser sensing system with embedded Sagnac interferometer[C]. SPIE, 2014, 9233: 92330M.

[22] 岳荷荷. 基于混纯的保密通信和波形识别的应用研究[D]. 大连: 大连理工大学, 2015: 8-10.

    Yue H H. Investigation of secure communication and waveform recognition based on chaos[D]. Dalian: Dalian University of Technology, 2015: 8-10.

[23] 谭靖, 陈伟民, 吴俊, 等. 基于萨格奈克/双马赫-曾德干涉原理的长途管道破坏预警技术研究[J]. 光子学报, 2008, 37(1): 67-72.

    Tan J, Chen W M, Wu J, et al. Study on long distance pipeline destruction alarm technology based on Sagnac/Mach-Zehnder interferometers[J]. Acta Photonica Sinica, 2008, 37(01): 67-72.

[24] 吴东方. 干涉式光纤声传感器及其定位技术研究[D]. 上海: 复旦大学, 2008: 63-64.

    Wu D F. Study on Sagnac interferometric fiber optic sensor and its location technology Sagnac[D]. Shanghai: Fudan University, 2008: 63-64.

[25] 杜江. 用于光纤麦克风探测系统的光纤探头设计与实现[D]. 成都: 电子科技大学, 2015: 31-33.

    Du J. Design and implementation of fiber-optic probe for fiber optic microphone detection system[D]. Chengdu: University of Electronic Science and Technology of China, 2015: 31-33.

[26] 王巧云. 光纤法布里-珀罗声波传感器及其应用研究[D]. 大连: 大连理工大学, 2010: 61-62.

    Wang Q Y. Fiber Fabry-Perot acoustic wave sensor and its application[D]. Dalian: Dalian University of Technology, 2010: 61-62.

[27] 李瑞, 肖文, 姚东. 光纤声传感器的实验系统研究[J]. 光电工程, 2009, 36(6): 131-134.

    Li R, Xiao W, Yao D. Experimental system research of fiber acoustic sensor[J]. Opto-Electronic Engineering, 2009, 36(6): 131-134.

王宇, 靳宝全, 张建国, 王东, 张明江, 王安帮, 王云才. 基于混沌激光干涉的分布式光纤声音传感[J]. 光学学报, 2018, 38(3): 0328016. Wang Yu, Jin Baoquan, Zhang Jianguo, Wang Dong, Zhang Mingjiang, Wang Anbang, Wang Yuncai. Distributed Optical Fiber Acoustic Sensing Based on Chaotic Laser Interference[J]. Acta Optica Sinica, 2018, 38(3): 0328016.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!