光学学报, 2018, 38 (2): 0212004, 网络出版: 2018-08-30   

条纹投影相位高度转换映射模型及其标定方法 下载: 1313次

Fringe Projection Phase-to-Height Mapping Model and Its Calibration Method
作者单位
天津大学精密测试技术及仪器国家重点实验室, 天津 300072
引用该论文

陆鹏, 孙长库, 王鹏. 条纹投影相位高度转换映射模型及其标定方法[J]. 光学学报, 2018, 38(2): 0212004.

Peng Lu, Changku Sun, Peng Wang. Fringe Projection Phase-to-Height Mapping Model and Its Calibration Method[J]. Acta Optica Sinica, 2018, 38(2): 0212004.

参考文献

[1] Su X Y, Zhang Q C. Dynamic 3-D shape measurement method: a review[J]. Optics and Lasers in Engineering, 2010, 48(2): 191-204.

    Su X Y, Zhang Q C. Dynamic 3-D shape measurement method: a review[J]. Optics and Lasers in Engineering, 2010, 48(2): 191-204.

[2] Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques[J]. Optics and Lasers in Engineering, 2010, 48(2): 149-158.

    Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques[J]. Optics and Lasers in Engineering, 2010, 48(2): 149-158.

[3] 苏显渝, 张启灿, 陈文静. 结构光三维成像技术[J]. 中国激光, 2014, 41(2): 0209001.

    苏显渝, 张启灿, 陈文静. 结构光三维成像技术[J]. 中国激光, 2014, 41(2): 0209001.

    Su X Y, Zhang Q C, Chen W J. Three-dimensional imaging based on structured illumination[J]. Chinese Journal of Lasers, 2014, 41(2): 0209001.

    Su X Y, Zhang Q C, Chen W J. Three-dimensional imaging based on structured illumination[J]. Chinese Journal of Lasers, 2014, 41(2): 0209001.

[4] Yao J, Tang Y, Chen J B. Three-dimensional shape measurement with an arbitrarily arranged projection Moiré system[J]. Optics Letters, 2016, 41(2): 717-720.

    Yao J, Tang Y, Chen J B. Three-dimensional shape measurement with an arbitrarily arranged projection Moiré system[J]. Optics Letters, 2016, 41(2): 717-720.

[5] Duan X J, Duan F J, Lv C R. Three-dimensional shape reconstruction system based on fiber-optic interference fringe imaging[J]. International Journal of Imaging Systems and Technology, 2012, 22(4): 9-14.

    Duan X J, Duan F J, Lv C R. Three-dimensional shape reconstruction system based on fiber-optic interference fringe imaging[J]. International Journal of Imaging Systems and Technology, 2012, 22(4): 9-14.

[6] 杨国威, 孙长库, 王鹏. 频闪激光光栅条纹实时投射系统[J]. 光学学报, 2014, 34(11): 1112002.

    杨国威, 孙长库, 王鹏. 频闪激光光栅条纹实时投射系统[J]. 光学学报, 2014, 34(11): 1112002.

    Yang G W, Sun C K, Wang P. Real-time stroboscopic laser fringe-pattern projection system[J]. Acta Optica Sinica, 2014, 34(11): 1112002.

    Yang G W, Sun C K, Wang P. Real-time stroboscopic laser fringe-pattern projection system[J]. Acta Optica Sinica, 2014, 34(11): 1112002.

[7] 陈松林, 赵吉宾, 夏仁波. 多频外差原理相位解包裹方法的改进[J]. 光学学报, 2016, 36(4): 0412004.

    陈松林, 赵吉宾, 夏仁波. 多频外差原理相位解包裹方法的改进[J]. 光学学报, 2016, 36(4): 0412004.

    Chen S L, Zhao J B, Xia R B. Improvement of the phase unwrapping method based on multi-frequency heterodyne principle[J]. Acta Optica Sinica, 2016, 36(4): 0412004.

    Chen S L, Zhao J B, Xia R B. Improvement of the phase unwrapping method based on multi-frequency heterodyne principle[J]. Acta Optica Sinica, 2016, 36(4): 0412004.

[8] Ding Y, Xi J T, Yu Y G, et al. Absolute phase recovery of three fringe patterns with selected spatial frequencies[J]. Optics and Lasers in Engineering, 2015, 70: 18-25.

    Ding Y, Xi J T, Yu Y G, et al. Absolute phase recovery of three fringe patterns with selected spatial frequencies[J]. Optics and Lasers in Engineering, 2015, 70: 18-25.

[9] 雷志辉, 李健兵. 基于双频投影条纹的全自动相位解包裹方法[J]. 光学学报, 2006, 26(1): 39-42.

    雷志辉, 李健兵. 基于双频投影条纹的全自动相位解包裹方法[J]. 光学学报, 2006, 26(1): 39-42.

    Lei Z H, Li J B. Full automatic phase unwrapping method based on projected double spatial frequency fringes[J]. Acta Optica Sinica, 2006, 26(1): 39-42.

    Lei Z H, Li J B. Full automatic phase unwrapping method based on projected double spatial frequency fringes[J]. Acta Optica Sinica, 2006, 26(1): 39-42.

[10] An Y T, Hyun J S, Zhang S. Pixel-wise absolute phase unwrapping using geometric constraints of structured light system[J]. Optics Express, 2016, 24(16): 18445-18459.

    An Y T, Hyun J S, Zhang S. Pixel-wise absolute phase unwrapping using geometric constraints of structured light system[J]. Optics Express, 2016, 24(16): 18445-18459.

[11] Sansoni G, Carocci M, Rodella R. Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors[J]. Applied Optics, 1999, 38(31): 6565-6573.

    Sansoni G, Carocci M, Rodella R. Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors[J]. Applied Optics, 1999, 38(31): 6565-6573.

[12] Zhang S, Huang P S. Novel method for structured light system calibration[J]. Optical Engineering, 2006, 45(8): 083601.

    Zhang S, Huang P S. Novel method for structured light system calibration[J]. Optical Engineering, 2006, 45(8): 083601.

[13] Li K, Bu J J, Zhang D S. Lens distortion elimination for improving measurement accuracy of fringe projection profilometry[J]. Optics and Lasers in Engineering, 2016, 85: 53-64.

    Li K, Bu J J, Zhang D S. Lens distortion elimination for improving measurement accuracy of fringe projection profilometry[J]. Optics and Lasers in Engineering, 2016, 85: 53-64.

[14] Li B W, Zhang S. Structured light system calibration method with optimal fringe angle[J]. Applied Optics, 2014, 53(33): 7942-7950.

    Li B W, Zhang S. Structured light system calibration method with optimal fringe angle[J]. Applied Optics, 2014, 53(33): 7942-7950.

[15] Chen R, Xu J, Zhang S, et al. A self-recalibration method based on scale-invariant registration for structured light measurement systems[J]. Optics and Lasers in Engineering, 2017, 88: 75-81.

    Chen R, Xu J, Zhang S, et al. A self-recalibration method based on scale-invariant registration for structured light measurement systems[J]. Optics and Lasers in Engineering, 2017, 88: 75-81.

[16] Léandry I, Brèque C, Valle V. Calibration of a structured light projection system: development to large dimension objects[J]. Optics and Lasers in Engineering, 2012, 50(3): 373-379.

    Léandry I, Brèque C, Valle V. Calibration of a structured light projection system: development to large dimension objects[J]. Optics and Lasers in Engineering, 2012, 50(3): 373-379.

[17] Lu P, Sun C K, Liu B, et al. Accurate and robust calibration method based on pattern geometric constraints for fringe projection profilometry[J]. Applied Optics, 2017, 56(4): 784-794.

    Lu P, Sun C K, Liu B, et al. Accurate and robust calibration method based on pattern geometric constraints for fringe projection profilometry[J]. Applied Optics, 2017, 56(4): 784-794.

[18] Du H, Wang Z Y. Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system[J]. Optics Letters, 2007, 32(16): 2438-2440.

    Du H, Wang Z Y. Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system[J]. Optics Letters, 2007, 32(16): 2438-2440.

[19] Huang L, Chua P, Asundi A. Least-squares calibration method for fringe projection profilometry considering camera lens distortion[J]. Applied Optics, 2010, 49(9): 1539-1548.

    Huang L, Chua P, Asundi A. Least-squares calibration method for fringe projection profilometry considering camera lens distortion[J]. Applied Optics, 2010, 49(9): 1539-1548.

[20] Tavares P J, Vaz M A. Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry[J]. Optics Communications, 2007, 274(2): 307-314.

    Tavares P J, Vaz M A. Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry[J]. Optics Communications, 2007, 274(2): 307-314.

[21] Zhang Z H, Ma H Y, Guo T, et al. Simple, flexible calibration of phase calculation based three-dimensional imaging system[J]. Optics Letters, 2011, 36(7): 1257-1259.

    Zhang Z H, Ma H Y, Guo T, et al. Simple, flexible calibration of phase calculation based three-dimensional imaging system[J]. Optics Letters, 2011, 36(7): 1257-1259.

[22] 孙长库, 何明霞, 王鹏. 激光测量技术[M]. 天津: 天津大学出版社, 2008: 144- 149.

    孙长库, 何明霞, 王鹏. 激光测量技术[M]. 天津: 天津大学出版社, 2008: 144- 149.

    Sun CK, He MX, WangP. Laser measurement technology[M]. Tianjin: Tianjin University Press, 2008: 144- 149.

    Sun CK, He MX, WangP. Laser measurement technology[M]. Tianjin: Tianjin University Press, 2008: 144- 149.

[23] Gu F F, Zhao H, Ma Y Y, et al. Camera calibration based on the back projection process[J]. Measurement Science and Technology, 2015, 26(12): 125004.

    Gu F F, Zhao H, Ma Y Y, et al. Camera calibration based on the back projection process[J]. Measurement Science and Technology, 2015, 26(12): 125004.

[24] Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2000, 22(11): 1330-1334.

    Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2000, 22(11): 1330-1334.

陆鹏, 孙长库, 王鹏. 条纹投影相位高度转换映射模型及其标定方法[J]. 光学学报, 2018, 38(2): 0212004. Peng Lu, Changku Sun, Peng Wang. Fringe Projection Phase-to-Height Mapping Model and Its Calibration Method[J]. Acta Optica Sinica, 2018, 38(2): 0212004.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!