Frontiers of Optoelectronics, 2011, 4 (3): 231, 网络出版: 2012-09-21  

All-optical signal processing based on semiconductor optical amplifiers

All-optical signal processing based on semiconductor optical amplifiers
作者单位
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
摘要
Abstract
In this paper, we review the recent progress in the optical signal processing based on the nonlinearity of semiconductor optical amplifiers (SOAs). The four important optical signal processing functional blocks in optical switching are presented, i.e., optical wavelength conversion, optical regeneration, optical logic, and optical format conversion. We present a brief overview of optical wavelength conversion, and focus on various schemes to suppress the slow gain recovery of the SOA and improve the operating speed of the SOA-based optical switches. Optical regeneration including re-amplification, re-shaping and re-timing is also presented. Optical clock recovery that is essential for optical regeneration is reviewed. We also report the recent advances in optical logic and optical format conversion, respectively. After reviewing the four important optical signal processing functional blocks, the review concludes with the future research directions and photonic integration.
参考文献

[1] Alferness R C. Optical communications — a view into the future. In: Proceedings of the 34th European Conference on Optical Communication (ECOC). 2008, 1

[2] O’Mahony M J, Politi C, Klonidis D, Nejabati R, Simeonidou D. Future optical networks. IEEE Journal of Lightwave Technology, 2006, 24(12): 4684-4686

[3] Desurvire E B. Capacity demand and technology challenges for lightwave systems in the next two decades. IEEE Journal of Lightwave Technology, 2006, 24(12): 4697-4710

[4] Sano A, Masuda H, Kobayashi T, Fujiwara M, Horikoshi K, Yoshida E, Miyamoto Y, Matsui M, Mizoguchi M, Yamazaki H, Sakamaki Y, Ishii H. 69.1-Tb/s (432171-Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection. In: Proceedings of Optical Fiber Communication Conference (OFC/NFOEC) 2010. 2010, 1-3

[5] Dorren H J S, Hill M T, Liu Y, Calabretta N, Srivatsa A, Huijskens FM, de Waardt H, Khoe G D. Optical packet switching and buffering by using all-optical signal processing methods. Journal of Lightwave Technology, 2003, 21(1): 2-12

[6] Yoo S J B. Optical packet and burst switching technologies for the future photonic internet. IEEE Journal of Lightwave Technology, 2006, 24(12): 4468-4492

[7] Blumenthal D J, Bowers J E, Rau L, Chou H F, Rangarajan S, Wang W, Poulsen K N. Optical signal processing for optical packet switching networks. IEEE Communications Magazine, 2003, 41(2): S23-S29

[8] Ben Yoo S J. Power consumption in optical packet switches. In: Proceedings of the 34th European Conference on Optical Communication (ECOC). 2008

[9] Nicholes S C, Ma anovi M L, Jevremovi B, Lively E, Coldren L A, Blumenthal D J. The world’s first InP 88 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port. In: Proceedings of Optical Fiber Communication Conference (OFC) 2009. 2009, PDPB1

[10] Zirngibl M. IRIS: optical switching technologies for scalable data networks. In: Proceedings of Optical Fiber Communication Conference (OFC) 2006. 2006, 2

[11] Blumenthal D J, Masanovic M. LASOR (label switched optical router): architecture and underlying integration technologies. In: Proceedings of European Conference on Optical Communication (ECOC). 2005, 49

[12] Ramos F, Kehayas E, Martinez J M, Clavero R, Marti J, Stampoulidis L, Tsiokos D, Avramopoulos H, Zhang J, Holm-Nielsen P V, Chi N, Jeppesen P, Yan N, Monroy I T, Koonen A M J, HillMT, Liu Y, Dorren H J S, Caenegem R V, Colle D, Pickavet M, Rip ti B. IST-LASAGNE: towards all-optical label swapping employing optical logic gates and optical flip-flops. Journal of Lightwave Technology, 2005, 23(10): 2993-3011

[13] Stamatiadis C, Petrantonakis D, Bakopoulos P, Kehayas E, Zakynthinos P, Kouloumentas Ch, Stampoulidis L, Dekker R, Klein E J, Avramopoulos H. First demonstration of WDM-enabled all-optical wavelength conversion with a SOA and a 2nd order microring resonator ROADM. In: Proceedings of Optical Fiber Communication Conference (OFC). 2009, PDPA8

[14] Cotter D, Manning R J, Blow K J, Ellis A D, Kelly A E, Nesset D, Phillips I D, Poustie A J, Rogers D C. Nonlinear optics for highspeed digital information processing. Science, 1999, 286(5444): 1523-1528

[15] Stubkjaer K E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE Journal on Selected Topics in Quantum Electronics, 2000, 6(6): 1428-1435

[16] Dorren H J S, Lenstra D, Liu Y, Hill M T, Khoe G D. Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories. IEEE Journal of Quantum Electronics, 2003, 39(1): 141-148

[17] Nuzman C, Leuthold J, Ryf R, Chandrasekhar S, Giles C, Neilson D. Design and implementation of wavelength-flexible network nodes. Journal of Lightwave Technology, 2003, 21(3): 648-663

[18] Gripp J, Duelk M, Simsarian J E, Bhardwaj A, Bernasconi P, Laznicka O, Zirngibl M. Optical switch fabrics for ultra-high capacity IP-routers. Journal of Lightwave Technology, 2003, 21(11): 2839-2850

[19] Kang I, Dorrer C, Zhang LM, Dinu M, Rasras M, Buhl L L, Cabot S, Bhardwaj A, Liu X, Cappuzz M A, Gomez L, Wong-Foy A, Chen Y F, Dutta N K, Patel S S, Neilson D T, Giles C R, Piccirilli A, Jaques J. Characterization of the dynamical processes in alloptical signal processing using semiconductor optical amplifiers. IEEE Journal of Selected Topics Quantum Electronics, 2008, 14(3): 758-769

[20] Mork J, Mecozzi A. Response function for gain and refractive index dynamics in active semiconductor waveguides. Applied Physics Letters, 1994, 65(14): 1736-1738

[21] Nielsen M L, Mork J, Suzuki R, Sakaguchi J, Ueno Y. Experimental and theoretical investigation of the impact of ultrafast carrier dynamics on high-speed SOA-based all-optical switches. Optics Express, 2006, 14(1): 331-347

[22] Huang X, Qin C, Huang D X, Zhang X L. Local carrier recovery acceleration in quantum well semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2010, 46(10): 1407-1413

[23] Spyropoulou M, Pleros N, Vyrsokinos K, Apostolopoulos D, Bougioukos M, Petrantonakis D, Miliou A, Avramopoulos H. 40 Gb/s NRZ wavelength conversion using a differentially-biased SOA-MZI: theory and experiment. Journal of Lightwave Technology, 2011, 29(10): 1489-1499

[24] Leuthold J, Moller L, Jaques J, Cabot S, Zhang L, Bernasconi P, Cappuzzo M, Gomez L, Laskowski E, Chen E, Wong-Foy A, Griffin A. 160 Gb/s SOA all-optical wavelength converter and assessment of its regenerative properties. Electronics Letters, 2004, 40(9): 554-555

[25] Kang I, Dorrer C, Zhang L, Rasras M, Buhl L, Bhardwaj A, Cabot S, Dinu M, Liu X, Cappuzzo M, Gomez L, Wong-Foy A, Chen Y F, Patel S, Neilson D T, Jacques J, Giles C R. Regenerative all optical wavelength conversion of 40-Gb/s DPSK signals using a semiconductor optical amplifier Mach-Zehnder interferometer. In: Proceedings of European Conference on Optical Communication (ECOC) 2005. 2005, 6: 29-30

[26] Wang J, Maitra A, Freude W, Leuthold J. Regenerative properties of interferometric all-optical DPSK wavelength converters. Optics Express, 2009, 17(25): 22639-22658

[27] Liu Y, Tangdiongga E, Li Z, deWaardt H, Koonen A M J, Khoe G D, Shu X W, Bennion I, Dorren H J S. Error-free 320-Gb/s alloptical wavelength conversion using a single semiconductor optical amplifier. IEEE Journal of Lightwave Technology, 2007, 25(1): 103-108

[28] Liu Y, Tangdiongga E, Li Z, Zhang S X, de Waardt H, Khoe G D, Dorren H J S. Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter. IEEE Journal of Lightwave Technology, 2006, 24(1): 230-236

[29] Leuthold J, Marom M D, Cabot S, Jaques J J, Ryf R, Giles C R. All-optical wavelength conversion using a pulse reformatting optical filter. Journal of Lightwave Technology, 2004, 22(1): 186-192

[30] Ueno Y, Nakamura S, Tajima K. Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160-GHz range for use in ultrahigh-speed all-optical signal processing. Journal of the Optics Society of America B: Optics Physics, 2002, 19(11): 2573-2589

[31] Nielsen M L, Mork J. Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering. Journal of the Optics Society of America B: Optics Physics, 2004, 21(9): 1606-1619

[32] Dong J J, Fu S N, Zhang X L, Shum P, Zhang L R, Huang D X. Analytical solution for SOA-based all-optical wavelength conversion using transient cross-phase modulation. IEEE Photonics Technology Letters, 2006, 18(24): 2554-2556

[33] Agis F G, Raz O, Zhang S, Tangdiongga E, Zimmermann L, Voigt K, Vyrsokinos C, Stampoulidis L, Dorren H J S. All-optical wavelength conversion at 160 Gbit/s using SOA and silicon-oninsulator photonic circuit. Electronics Letters, 2009, 45(22): 1132-1133

[34] Manning R J, Yang X, Webb R P, Giller R, Cotter D. Cancellation of non-linear patterning in semiconductor amplifier based switches. In: Proceedings of Optical Amplifiers and Their Applications. 2006, OTuC1

[35] Yang X L, Manning R J,Webb R P, Giller R, Gunning F, Cotter D. High-speed all-optical signal processing using semiconductor optical amplifiers. In: Proceedings of the 8th International Conference on Transparent Optical Networks (ICTON). 2006, 161-164

[36] Dupertuis M A, Pleumeekers J L, Hessler T P, Selbmann P E, Deveaud B, Dagens B, Emery J Y. Extremely fast high-gain and low-current SOA by optical speed-up at transparency. IEEE Photonics Technology Letters, 2000, 12(11): 1453-1455

[37] Pleumeekers J L, Kauer M, Dreyer K, Burrus C, Dentai A G, Shunk S, Leuthold J, Joyner C H. Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength. IEEE Photonics Technology Letters, 2002, 14(1): 12-14

[38] Matsumoto A, Nishimura K, Utaka K, Usami M. Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation. IEEE Journal of Quantum Electronics, 2006, 42(3): 313-323

[39] Wu Z, Huang Y, Wang Y, Wan J, Ye R. Novel scheme to increase the operation speed of a SOA for all-optical wavelength conversion. Proceedings of SPIE, 2007, 6782: 67822A

[40] Bramann G, Wünsche H J, Busolt U, Schmidt C, Schlak M, Sartorius B, Nolting H P. Two-wave competition in ultralong semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2005, 41(10): 1260-1267

[41] Runge P, Bunge C A, Petermann K. All-optical wavelength conversion with extinction ratio improvement of 100 Gb/s RZsignals in ultralong bulk semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2010, 46(6): 937-944

[42] Jungho K L, Laemmlin M, Meuer C, Bimberg D, Eisenstein G. Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2009, 45(3): 240-248

[43] Yu Y, Huang L R, Xiong M, Tian P, Huang D X. Enhancement of gain recovery rate and cross-gain modulation bandwidth using a two-electrode quantum-dot semiconductor optical amplifier. Journal of the Optical Society of America B: Optical Physics, 2010, 27(11): 2211-2217

[44] Meuer C, Schmidt-Langhorst C, Bonk R, Schmeckebier H, Arsenijevi D, Fiol G, Galperin A, Leuthold J, Schubert C, Bimberg D. 80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering. Optics Express, 2011, 19(6): 5134-5142

[45] Contestabile G, Maruta A, Sekiguchi S, Morito K, Sugawara M, Kitayama K. 80 Gb/s multicast wavelength conversion by XGM in a QD-SOA. In: Proceedings of the 36th European Conference on Optical Communication (ECOC). 2010, 1-3

[46] Leclerc O, Lavigne B, Balmefrezol E, Brindel P, Pierre L, Rouvillain D, Seguineau F. Optical regeneration at 40 Gb/s and beyond. Journal of Lightwave Technology, 2003, 21(11): 2779-2790

[47] Phillips I D, Ellis A D, Thiele J, Manning R J, Kelly A E. 40 Gbit/s all-optical data regeneration and demultiplexing with long pattern lengths using a semiconductor nonlinear interferometer. Electronics Letters, 1998, 34(24): 2340-2342

[48] Vivero T, Calabretta N, Monroy I T, Kassar G C, hman F, Yvind K, González-Marcos A, M rk J. 10 Gb/s-NRZ Optical 2Rregeneration in two-section SOA-EA chip. In: Proceedings of the 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society. 2007, 806-807

[49] Pan S L, Huo L, Yang Y F, Lou C Y, Gao Y Z. First and second order PMD mitigation using 3R regeneration. Proceedings of SPIE, 2005, 6021: 602108

[50] Fernandez A, Chao L, Chi J W D. All-optical clock recovery and pulse reshaping using semiconductor optical amplifier and dispersion compensating fiber in a ring cavity. IEEE Photonics Technology Letters, 2008, 20(13): 1148-1150

[51] Tang X F, Cartledge J C, Shen A, Dijk F V, Akrout A, Duan G H. Characterization of all-optical clock recovery for 40 Gb/s RZ-OOK and RZ-DPSK data using mode-lock semiconductor laser. Journal of Lightwave Technology, 2009, 27(20): 4603-4609

[52] Arahira S, Takahashi H, Nakamura K, Yaegashi H, Ogawa Y. Polarization-, wavelength-, and filter-free all-optical clock recovery in a passively mode-lock laser diode with orthogonally pumped polarization-diversity configuration. IEEE Journal of Quantum Electronics, 2009, 45(5): 476-487

[53] Arahira S. Variable-in, variable-out optical clock recovery with an optically injection-locked and regeneratively actively mode-locked laser diode. IEEE Journal of Quantum Electronics, 2011, 47(5): 614-621

[54] Cetina J P, Latkowshi S, Maldonado-Basilio R, Landais P. Wavelength tunability of all-optical clock-recovery based on quantum-dash mode-locked laser diode under injection of a 40-Gbs NRZ data stream. IEEE Photonics Technology Letters, 2011, 23(9): 531-533

[55] Chen L R, Cartledge J C. Mode-locking in a semiconductor fiber laser using cross-absorption modulation in an electroabsorption modulator and application to all-optical clock recovery. Journal of Lightwave Technology, 2008, 26(7): 799-806

[56] Silva M C, Lagrost A, Bramerie L, Gay M, Besnard P, Joindot M, Simon J C, Shen A, Duan G H. Up to 427 GHz all optical frequency down-conversion clock recovery based on quantumdash Fabry-Perot mode-locked laser. Journal of Lightwave Technology, 2011, 29(4): 609-615

[57] Ohno T, Sato K, Iga R, Kondo Y, Ito T, Furuta T, Yoshino K, Ito H. Recovery of 160 GHz optical clock from 160 Gbit/s data stream using modelocked laser diode. Electronics Letters, 2004, 40(4): 265-266

[58] Tang X F, Cartledge J C, Shen A, Dijk F V, Duan G H. All-optical clock recovery for 40-Gbs MZM-generated NRZ-DPSK signals using a self-pulsating DBR laser. IEEE Photonics Technology Letters, 2008, 20(17): 1443-1445

[59] Monfils L, Cartedge J C. Detailed theoretical and experimental characterization of 10 Gb/s clock recovery using a Q-switched selfpulsating laser. Journal of Lightwave Technology, 2009, 27(5): 619-626

[60] Sun Y, Pan J Q, Zhao L J, ChenWX,Wang W,Wang L, Zhao X F, Lou C Y. All-optical clock recovery for 20 Gb/s using an amplified feedback DFB laser. IEEE Journal of Lightwave Technology, 2010, 28(17): 2521-2524

[61] Wang L, Zhao X, Lou C, Lu D, Sun Y, Zhao L, Wang W. 40 Gbits/s all-optical clock recovery for degraded signals using an amplified feedback laser. Applied Optics, 2010, 49(34): 6577-6581

[62] Tang X F, Cartledge J C, Shen A, Dijk F V, Duan G H. 40-Gbs polarization-insensitive all-optical clock recovery using a quantum- dot Fabry-Perot laser assisted by an SOA and bandpass filtering. IEEE Photonics Technology Letters, 2008, 20(24): 2051-2053

[63] Wang F, Zhang X L, Xu E M, Zhang Y. A novel all-optical clock recovery scheme. In: Proceedings of Communications and Photonics Conference and Exhibition (ACP) 2009. 2009, 1-6

[64] Cartledge J C, Tang X F, Ya ez M, Shen A, Akrout A, Duan G H. All-optical clock recovery using a quantum-dash Fabry-Perot laser. In: Proceedings of IEEE Topic Meeting on Microwave Photonics (MWP). 2010, 201-204

[65] Spyropoulou M, Pleros N, Papadimitriou G, Tomkos I, Pomportsis A. Multi-wavelength clock recovery based on a Fabry-Perot filter and a quantum-dot semiconductor optical amplifier. In: Proceedings of the 10th Anniversary International Conference on Transparent Optical Networks. 2008, 128-131

[66] Wang F, Yu Y, Huang X, Zhang X L. Single and multiwavelength all-optical clock recovery using Fabry-Perot semiconductor optical amplifier. IEEE Photonics Technology Letters, 2009, 21(16): 1109-1111

[67] Parra-Cetina J, Latkowski S, Maldonado-Basilio R, Landais P. Timing jitter and all-optical clock recovery based on a quantumdash Fabry-Perot semiconductor laser. In: Proceedings of the 12th Anniversary International Conference on Transparent Optical Networks. 2010, 1-4

[68] Poustie A. SOA-based all-optical processing. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference. 2007, OWF1

[69] Wolfson D, Hansen P B, Kioch A, Stubkjaer K E. All-optical 2R regeneration based on interferometric structure incorporating semiconductor optical amplifiers. Electronics Letters, 1999, 35(1): 59-60

[70] Gavioli G, Thomsen B C, Mikhailov V, Bayvel P. Cascadability properties of optical 3R regenerators based on SOAs. Journal of Lightwave Technology, 2007, 25(9): 2766-2775

[71] Duan P X, Chen L G, Zhang S J, Zhou X L, Liu Y Z, Liu Y. Alloptical 2R regeneration based on self-induced polarization rotation in a single semiconductor optical amplifier. Chinese Science Bulletin, 2009, 54(20): 3704-3708

[72] Zhu Z, Funabashi M, Pan Z, Paraschis L, Yoo S J. 1000 cascaded stages of optical 3R regeneration with SOA-MZI-based clock enhancement to achieve 10-Gb/s 125000-km dispersion uncompensated transmission. IEEE Photonics Technology Letters, 2006, 18(20): 2159-2161

[73] Zhao X F,Wang L, Lu D, Lou C Y, Sun Y, Zhao L J,Wang W. 40-Gb/s all-optical 3R regeneration with semiconductor devices. In: Proceedings of the 19th Annual Wireless and Optical Communications Conference (WOCC). 2010, 1-3

[74] Contestabile G, Proietti R, Presi M, Ciaramella E. 40Gb/s wavelength preserving 2R regeneration for both RZ and NRZ signals. In: Proceedings of Optical Fiber Communication Conference. 2008, OWK1

[75] Errico A D, Contestabile G, Proietti R, Presi M, Ciaramella E, Bramerie L, Gay M, Lobo S, Joindot M, Simon J C, Massoubre D, Nguyen H T, Oudar J L. 2R optical regeneration combining XGC in a SOA and a saturable absorber. In: Proceedings of Optical Fiber Communication Conference. 2008, OWK4

[76] Contestabile G. All-optical signal regeneration using SOAs. In: Proceedings of Asia Communications and Photonics Conference and Exhibition. 2010, 7-8

[77] Chan L Y, Qureshi K K,Wai P K A, Moses B, Lui L F K, Tam H Y, Demokan M S. All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate. IEEE Photonics Technology Letters, 2003, 15(4): 593-595

[78] Martinez J M, Ramos F, Marti J. All-optical packet header processor based on cascaded SOA-MZIs. Electronics letters, 2004, 40(14): 894-895

[79] Fjelde T, Kloch A,Wolfson D, Dagens B, Coquelin A, Guillemot I, Gaborit F, Poingt F, Renaud M. Novel scheme for simple labelswapping employing XOR logic in an integrated interferometer wavelength converter. IEEE Photonics Technology Letters, 2001, 13(7): 750-752

[80] Bintjas C, Pleros N, Yiannopoulos K, Theophilopoulos G, Kalyvas M, Avramopoulos H, Guekos G. All-optical packet address and payload separation. IEEE photonic technology letters, 2002, 14(12): 1728-1730

[81] Martinez J M, Liu Y, Clavero R, Koonen A M J, Herrera J, Ramos F, Dorren H J S, Marti J. All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks. IEEE Photonics Technology Letters, 2007, 19(17): 1316-1318

[82] Kim J H, Jhon Y M, Byun Y T, Lee S, Woo D H, Kim S H. Alloptical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photonics Technology Letters, 2002, 14(10): 1436-1438

[83] Kim S H, Kim J H, Yu B G, Byun Y T, Jeon YM, Lee S,Woo D H. All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers. Electronics Letters, 2005, 41(18): 1027-1028

[84] Reis C, Dionísio R P, Neto B, Teixeira A, Andre P. All-optical XOR based on integrated MZI-SOA with Co and counterpropagation scheme. In: Proceedings of ICTON Mediterranean Winter Conference. 2009, 1-4

[85] Yang X L, Weng Q W, Hu W S. High-speed all-optical XOR gates using semiconductor optical amplifiers in ultrafast nonlinear interferometers. Frontiers of Optoelectronics in China, 2010, 3(3): 245-252

[86] Li Z, Liu Y, Zhang S, Ju H, deWaardt H, Khoe G D, Dorren H J S, Lenstra D. All-optical logic gates using semiconductor optical amplifier assisted by optical filter. Electronics Letters, 2005, 41(25): 1397-1399

[87] Han L Y, Zhang H Y, Jiang H, Wen H, Guo Y L. All-optical NOR and OR logic gates based on cross-polarization modulation in a semiconductor optical amplifier. Optics Engineering, 2008, 47(1): 015001

[88] Li Z H, Li G F. Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technology Letters, 2006, 18(12): 1341-1343

[89] Li P L, Huang D X, Zhang X L. SOA-based ultrafast multifunctional all-optical logic gates with PolSK modulated signals. IEEE Journal of Quantum Electronics, 2009, 45(12): 1542-1550

[90] Zhang X L, Xu J, Dong J J, Huang D X. All-optical logic gates based on semiconductor optical amplifiers and tunable filters. Lecture Notes in Computer Science, 2009, 5882: 19-29

[91] Dong J, Zhang X,Wang F, Yu Y, Huang D. Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier. Electronics Letters, 2008, 44(12): 763-764

[92] Tan H N, Matsuura M, Kishi N. Wavelength-shift-free multichannel width-tunable NRZ-to-RZ modulation format conversion using a single SOA-based Sagnac interferometer. In: Proceedings of the Optoelectronics and Communications Conference. 2010, 208-209

[93] Astar W, Carter G M. 10 Gbit/s RZ-OOK to RZ-BPSK format conversion using SOA and synchronous pulse carver. Electronics Letters, 2008, 44(5): 369-370

[94] Li P L, Huang D X, Zhang X L, Chen H M. Ultrahigh-speed multifunctional all-optical logic gates based on FWM in SOAs with PolSK modulated signals. In: Proceedings of Optical Fiber Communication Conference. 2008, 1-3

[95] Nissanka S M, Maruta A, Mitani S, Shimizu K, Miyahara T, Aoyagi T, Hatta T, Sugitatsu A, Kitayama K I. All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using integrated SOA three-arm-MZI wavelength converter. In: Proceedings of Optical Fiber Communication Conference. 2009, 1-3

[96] Wu B B, Fu S N,Wu J, Shum P, Ngo N Q, Xu K, Hong X B, Lin J T. 40 Gb/s multifunction optical format conversion module with wavelength multicast capability using nondegenerate four-wave mixing in a semiconductor optical amplifier. Journal of Lightwave Technology, 2009, 27(20): 4446-4454

[97] Smit M K, Bente E A J M, Hill M T, Karouta F, Leijtens X J M, Oei Y S, van der Tol J J G M, Notzel R, Koenraad P M, Dorren H S, de Waardt H, Koonen A M J, Khoe G D. Current status and prospects of photonic IC technology. In: Proceedings of IEEE Conference on Indium Phosphide and Related Materials. 2007, 3-6

[98] Liu Y, Nan Y,Wang B J, Zhou D B, An X, Bian J, Pan J Q, Zhao L J, Wang W. Monolithic integration of widely tunable sampled grating DBR laser with tilted semiconductor optical amplifier. Journal of Semiconductors, 2010, 31(7): 074003

[99] Liu H B, Zhao L J, Pan J Q, Zhu H L, Zhou F, Wang B J, Wang W. Monolithic integration of sampled grating DBR with electroabsorption modulator by combining selective-area-growth MOCVD and quantum-well intermixing. Chinese Physics Letters, 2008, 25(10): 3670-3672

[100] Kang I, Rasras M, Buhl L, Dinu M, Cabot S, Cappuzzo M, Gomez L T, Chen Y F, Patel S S, Dutta N, Piccirilli A, Jaques J, Giles C R. Generation of 173-Gb/s single-polarization QPSK signals by alloptical format conversion using a photonic integrated device. In: Proceedings of the 35th European Conference on Optical Communication (ECOC). 2009, 1-2

[101] Poustie A. Hybrid integration for advanced photonic devices. In: Proceedings of European Conference on Integrated Optics (ECIO). 2008, WeB1

Yong LIU, Ligong CHEN, Tianxiang XU, Jinglei MAO, Shangjian ZHANG, Yongzhi LIU. All-optical signal processing based on semiconductor optical amplifiers[J]. Frontiers of Optoelectronics, 2011, 4(3): 231. Yong LIU, Ligong CHEN, Tianxiang XU, Jinglei MAO, Shangjian ZHANG, Yongzhi LIU. All-optical signal processing based on semiconductor optical amplifiers[J]. Frontiers of Optoelectronics, 2011, 4(3): 231.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!