半导体光电, 2019, 40 (2): 181, 网络出版: 2019-05-05  

纳米薄膜光纤法布里珀罗传感器的温度特性

Temperature Characteristics of NanoThin Film Fiber FabryPerot Sensor
作者单位
1 武汉东湖学院 电子信息工程学院, 武汉 430212
2 武汉理工大学 光纤传感技术国家工程实验室, 武汉 430070
摘要
在对薄膜材料热光效应和热膨胀特性研究的基础上, 综合运用光学薄膜法布里珀罗腔(FabryPerot)干涉理论, 采用MATLAB 编程设计了纳米薄膜光纤法布里珀罗传感器的仿真分析程序, 模拟了薄膜型光纤法布里珀罗传感探头反射光谱随温度变化的波长漂移特性, 分析了不同材料热光效应和热膨胀特性对温度特性的影响权重, 并进行了实验验证。验证结果表明, 传感探头测试光谱的温度变化特性与仿真特性一致, 纳米薄膜光纤法布里珀罗传感器的理论仿真可用于选择纳米薄膜材料及筛选温度敏感且镀制容差大的膜系, 对传感探头的研制具有指导意义。
Abstract
The temperature sensing principles of the nanothin film fiber FabryPerot (FP) sensor were analyzd. Based on the research of thermooptic effect and thermal expansion property of the nanothin film materials, MATLAB simulation program was designed to simulate the temperature characteristic of nanothin film fiber FP sensor based on FP interference theory. The influence weights of thermooptic effect and thermal expansion characteristics of different materials on temperature characteristics were analyzed. Experimental result shows that the temperature characteristic of interference fringes is almost the same as simulation.
参考文献

[1] 江俊峰, 吴 凡, 王 双, 等. 蓝宝石光纤法布里珀罗高温传感的实验研究[J]. 光电子·激光, 2017, 28(4): 347353.

    Jiang Junfeng, Wu Fan, Wang Shuang, et al. Experimental research on high temperature sapphire fiber FabryPerot sensing system[J]. J. of Optoelectronics·Laser, 2017, 28(4): 347353.

[2] 李自亮, 廖常锐, 刘 申, 等. 光纤法布里珀罗干涉温度压力传感技术研究进展[J]. 物理学报, 2017, 66(7): 070708.

    Li Ziliang, Liao Changrui, Liu Shen, et al. Research progress of infiber FabryPerot interferometric temperature and pressure sensors[J]. Acta Phys. Sin., 2017, 66(7): 070708.

[3] Liu S, Wang Y, Liao C, et al. Highsensitivity strain sensor based on infiber improved FabryPerot interferometer[J]. Opt. Lett., 2014, 39(7): 21214.

[4] Zhou Bin, Lu Changtao, et al. Magnetic field sensor of enhanced sensitivity and temperature selfcalibration based on silica fiber FabryPerot resonator with silicone cavity[J]. Opt. Express, 2017, 25(7): 8108.

[5] Li Ling, Feng Zhongyao, Qiao Xueguang, et al. Ultrahigh sensitive temperature sensor based on FabryPerot interference assisted by a graphene diaphragm[J]. IEEE Sensors J., 2015, 15(1): 505509.

[6] 江小峰, 林 春, 谢海鹤, 等. MEMS FP干涉型压力传感器[J]. 红外与激光工程, 2014, 43(7): 22572262.

    Jiang Xiaofeng, Lin Chun, Xie Haihe, et al. MEMS FP interferometry pressure sensor[J]. Infrared and Laser Engin., 2014, 43(7): 22572262.

[7] Jiang Y, Xu J, Yang D, et al. Miniaturized fiber FabryPerot interferometer for strain sensing[J]. Microwave & Optical Technol. Lett., 2016, 58(6): 15101514.

[8] Costa G K, Gouvêa P M, Soares L M, et al. Infiber FabryPerot interferometer for strain and magnetic field sensing[J]. Opt. Express, 2016, 24(13): 14690.

[9] Yuan Lei, Huang Jie, Lan Xinwei, et al. Allinfiber optofluidic sensor fabricated by femtosecond laser assisted chemical etching[J]. Opt. Lett., 2014, 39(8): 23582361.

[10] Huang Chujia, Lee Dongwen, Dai Jixiang, et al. Fabrication of hightemperture sensor based on dielectric multilayer film on sapphire fiber tip[J]. Sensors and Actuators, 2015, A232: 99102.

[11] Lee Dongwen, Tian Zhipeng, Dai Jixiang, et al. Sapphire fiber hightemperature tip sensor with multilayer coating[J]. IEEE Photon. Technol. Lett., 2015, 27(7): 741743.

[12] Poeggel Sven, Duraibabu Dineshbabu, Tosi Daniele, et al. Differential in vivo urodynamic measurement in a single thin catheter based on two optical fiber pressure sensors[J]. J. of Biomedical Opt., 2015, 20(3): 037005.

[13] Liu S, Yang K, Wang Y, et al. Highsensitivity strain sensor based on infiber rectangular air bubble[J]. Sci. Rep., 2015, 5: 7624.

[14] Ranjan R, Esposito F, Ladicicco A, et al. Comparative study of longperiod gratings written in standard and fluorinedoped fibers by electric arc discharge[J]. IEEE Sensors J., 2016, 16(11): 42654273.

[15] 王如刚, 周 锋, 孔维宾, 等. 基于微纳光纤的长周期光栅及温度传感系统的设计与制备[J]. 光电子·激光, 2017, 28(4): 361364.

    Wang Rugang, Zhou Feng, Kong Weibin, et al. Design and fabrication of long period fiber gratings in microfiber and the temperature sensing system[J]. J. of Optoelectron.·Laser, 2017, 28(4): 361364.

[16] 高晓丹, 彭建坤, 吕大娟. 法布里珀罗薄膜干涉的光纤温度传感器[J]. 红外与激光工程, 2018, 47(1): 0122002.

    Gao Xiaodan, Peng Jiankun, Lv Dajuan. Optical fiber temperature sensor based on FabryPerot coating interference[J]. Infrared and Laser Engin., 2018, 47(1): 0122002.

高晓丹, 彭建坤. 纳米薄膜光纤法布里珀罗传感器的温度特性[J]. 半导体光电, 2019, 40(2): 181. GAO Xiaodan, PENG Jiankun. Temperature Characteristics of NanoThin Film Fiber FabryPerot Sensor[J]. Semiconductor Optoelectronics, 2019, 40(2): 181.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!