光学学报, 2008, 28 (11): 2090, 网络出版: 2008-11-17   

基于拉普拉斯塔型变换的Contourlet变换频谱混叠特性分析

Analysis of Frequency Aliasing of Contourlet Transform Based on Laplace Pyramidal Transform
作者单位
重庆大学光电技术及系统教育部重点实验室, 重庆 400044
摘要
针对Contourlet变换存在频谱混叠的问题,立足于拉普拉斯(Laplace)塔型变换的分析研究,指出了Contourlet变换频谱混叠的根本原因在于Laplace塔型变换中两个低通滤波器不满足Nyquist抽样定律,致使阻带截至频率大于π/2,导致Contourlet变换的频谱混叠。基此,设计了满足Nyquist抽样定律的低通滤波器,提出了一种新型的Contourlet变换,即抗混叠Contourlet变换。抗混叠Contourlet变换有效地抑制了频谱混叠,基函数的空频局域性均明显优于Contourlet。通过对Barbara图像的硬阈值去噪实验研究结果表明,抗混叠Contourlet变换去噪在峰值信噪比(PSNR)上高出Contoulet变换2.3 dB(噪声均方差为30),去噪效果好,同时还有效抑制了Contoulet变换去噪后的“划痕”现象,图像的视觉效果更佳。
Abstract
A major drawback of the original contourlet transform is frequency aliasing, i.e., its basis images are not localized in the frequency domain. We analyze the cause of this problem from the aspect of Laplace pyramidal (LP) transform to make sure that the aliasing is caused by the reason that the two lowpass filters of LP transform do not satisfy with Nyquist-Shannon sampling theorem and its stopband frequency is more than π/2. Based on this reason, we design a new low-pass filter with stopband frequency smaller than π/2 and propose an anti-aliasing contourlet transform. The anti-aliasing contourlet is superior to contourlet transform in the respects of the regularity and localization of basis function, and depresses the frequency aliasing efficiently. Numerical experiments on peppers image denoising show that the proposed anti-aliasing contourlet transform can significantly outperform the original transform both in terms of peak signal-noise-ratio(PSNR) by 2.3 dB with noise root-mean-square of 30 and in visual quality. It also depresses the scratch phenomenon after anti-aliasing contourlet transform denosing.
参考文献

[1] 杨福生著. 小波变换的工程分析与应用[M],北京:科学出版社,1999

    Yang Fusheng, The practical analysis of wavelet transform and its applications[M]. Beijing: Science Press, 1999

[2] S. Mallat著, 杨立华 等译. 信号处理的小波导引[M]. 北京: 机械工业出版社, 2002

    Stephen Mallat. A wavelet tour of signal processing[M]. Yang Lihua Transl., Beijing, China Machine Press, 2003

[3] 焦李成, 谭山. 图像的多尺度几何分析:回顾和展望[J]. 电子学报, 2003, 31(12A): 1975~1981

    Jiao Licheng, Tan Shan. Development and prospect of image multiscale geometric analysis[J]. Acta Electronica sinica, 2003, 31(13A): 1975~1981

[4] E. J. Candès. Ridgelets: Theory and application[D]. USA: Stanford University, 1998

[5] . J. Candès. Harmonic analysis of neural networks[J]. Applied and Computational Harmonic Analysis, 1999, 6(2): 197-218.

[6] . J. Candès, D. L. Donoho. Continuous curvelet transform: I. Resolution of the wavefront set[J]. Applied and Computational Harmonic Analysis, 2005, 19(2): 162-197.

[7] . J. Candès, D. L. Donoho. Continuous curvelet transform: II. Discretization and frames[J]. Applied and Computational Harmonic Analysis, 2005, 19(2): 198-222.

[8] . N. Do, M.Vetterli. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Trans. on Image Processing, 2005, 14(12): 2091-2106.

[9] M. N. Do. Directional multiresolution image representations[D]. Swiss Federal Institute of Technology, 2001

[10] . J. Burt, E. H. Adelson. The laplacian pyramid as a compact image code[J]. IEEE Trans. on Communication, 1983, 31(4): 532-540.

[11] . H. Bamberger, M. J. T. Smith. A filter bank for the directional decomposition of images: Theory and design[J]. IEEE Trans. on Signal Processing, 1992, 40(4): 882-893.

[12] . D.-Y. Po, M. N. Do. Directional multiscale modeling of images using the contourlet transform[J]. IEEE Trans.on Image Processing, 2006, 15(6): 1610-1620.

[13] E. J. Candès, L. Demanet, D. L. Donoho. Fast discrete curvelet transforms[R]. USA: California Institute of Technology, 2005

[14] . Eslami, H. Radha. Translation-invariant contourlet transform and its application to image denoising[J]. IEEE Trans. on Image Processing, 2006, 15(11): 3362-3374.

[15] . L. Cunha, J. P. Zhou, M. N. Do, The nonsubsampled contourlet transform: Theory, design, and applications[J]. IEEE Trans. on Image Processing, 2006, 16(10): 3089-3101.

[16] 李晖晖, 郭雷, 刘航. 基于二代Curvelet变换的图像融合研究[J]. 光学学报,2006, 26(5): 657~662

    Li Huihui, Guo Lei, Liu Hang, Research on image fusion based on the second generation curvelet transform[J]. Acta Optica Sinica, 2006, 26(5): 657~662

[17] 王刚, 贺安之, 肖亮. 基于高速公路裂纹局部线性特征内容的脊波变换域算法研究[J]. 光学学报,2006, 26(3): 341~346

    Wang Gang, He Anzhi, Xiao Liang. Algorithm research in ridgelet transform domain based on the image content of freeway local linear crack[J]. Acta Optica Sinica, 2006, 26(3): 341~346

[18] 苗启广, 王宝树. 基于改进的拉普拉斯金字塔变换的图像融合方法[J]. 光学学报, 2007, 27(9): 1605~1610

    Miao Qiguang, Wang Baoshu. Multi-sensor image fusion based on improved laplacian pyramid transform[J]. Acta Optica Sinica, 2007, 27(9): 1605~1610

[19] 陶然, 张惠云, 王越. 多抽样率数字信号处理理论及其应用[M]. 北京: 清华大学出版社, 2007

    Tao Ran, Zhang Huiyun, Wang Yue. The theory of multirate digital signal processing and its applications[M]. Beijing: Tsinghua Univeristy Press, 2007

[20] 胡广书著, 现代信号处理教程[M]. 北京: 清华大学出版社, 2004

    Hu Guangshu. Modern Signal Processing[M]. Beijing: Tsinghua University Press, 2004

[21] T. Chen, P. P. Vaidyanathan. Considerations in multidimensional filter bank design[C]. IEEE International Symposium on Circuit and System, Chicago, USA, 1993, 1: 643~646

[22] Yi Chen. Design and Application of Quincunx Filter Banks[D]. USA: University of Victoria, 2006

冯鹏, 魏彪, 潘英俊, 米德伶. 基于拉普拉斯塔型变换的Contourlet变换频谱混叠特性分析[J]. 光学学报, 2008, 28(11): 2090. Feng Peng, Wei Biao, Pan Yingjun, Mi Deling. Analysis of Frequency Aliasing of Contourlet Transform Based on Laplace Pyramidal Transform[J]. Acta Optica Sinica, 2008, 28(11): 2090.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!