光子学报, 2019, 48 (8): 0810003, 网络出版: 2019-11-28   

一种偏振普适性多尺度实时的图像去雾算法

A Polarizing Universal Multi-scale and Real-time Image Defogging Algorithm
作者单位
1 中国科学院光电研究院 计算光学成像技术重点实验室, 北京 100094
2 中国科学院大学, 北京 100049
摘要
针对现有偏振算法依赖于“天空区域”估计大气参数, 从而受白色目标或高亮区域干扰的不足之处, 提出了一种图像普适性多尺度偏振去雾方法.研究偏振差分图像四叉树空间索引和图像暗通道先验方法, 突破估计模型参数利用天空的局限性, 重建场景深度, 结合大气散射模型复原低频无雾图像; 同时针对目标复原过程中噪声遗留问题, 研究软阈值去噪算法, 结合低频信息重构的透射率, 以梯度增强方式丰富纹理细节, 最后小波重构出清晰图像.实验结果表明, 该算法有效消除了估计大气参数受制于天空区域的局限性, 抑制噪声的影响, 复原的目标更加清晰, 细节方面更为丰富, 算法运行效率方面有较大提高.
Abstract
In order to solve the problem that the existing polarization algorithms relied on the sky region to estimate the atmospheric parameters is interfered by white targets or highlighted regions, a universal multi-scale polarization dehazing method for image is proposed. The quadratic tree spatial index and image dark channel prior method of polarization difference image are researched, which break through the limitations of the estimated model parameters depending on the sky to reconstruct the scene depth, and restore low-frequency foggless images with atmospheric scattering model. At the same time, the soft threshold denoising algorithm is studied to solve the residual noise problem in the target restoration process, combining with the transmission rate reconstructed by low-frequency information, the texture details are enriched by gradient enhancement. Finally, the clear image is reconstruct through wavelet. The experiment results show that the proposed algorithm effectively eliminates the limitation of estimating the atmospheric parameters subjected to the sky region, and suppresses the influence of noise with the operation efficiency improved greatly. The target in restored image is more clearly, and the details are more abundant.
参考文献

[1] NARASIMHAN S G, NAYAR S K. Vision and the atmosphere[J]. International Journal of Computer Vision, 2002, 48(3): 233-254.

[2] SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Inatant dehazing of imahes using polarization[J]. IEEE Computer Society Conference on Computer Vision & Pattern Recognition, 2001, (1): 325-332.

[3] SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polriaztion-based vision through haze[J]. Applied Optics, 2003,42(3): 511-525.

[4] SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of Oceanic Engineering,2005,30(3): 570-587.

[5] 王勇, 薛默根, 黄勤超.基于大气背景抑制的偏振去雾算法[J].计算机工程, 2009,35(4): 271-275.

    WANG Yong, XUE Mo-gen, HUANG Qin-chao. Polarization defogging algorithm based on atmospheric background suppression[J]. Computer Engineering, 2009,35(4): 271-275.

[6] 彭文竹. 基于大气散射模型的偏振图像去雾算法[J].电子测量技术, 2011,34(7): 43-45.

    PENG Wen-zhu. Polarization dehazing algorithm based on atmosphere scattering model[J].Electronic Measurement Technology,2011,34(7): 34-45.

[7] QU Yu-fu, ZOU Zhao-fan. Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature[J]. Optics Express, 2017, 21: 25004.

[8] LIU Fei, CAO Lei, SHAO Xiao-peng. Polatimetric dehazing utilizing spatial frequency segregation of image[J]. Applied Optics, 2015,54(27): 8116-81122.

[9] LIU Fei, CAO Lei, SHAO Xiao-peng. Polarization characteristics of objects in long-wave infrared range[J]. Journal of Optical Society of America A, 2016,33(2): 237-243.

[10] CAO L, SHAO X, LIU F. Dehazing method through polarinetric imaging and multi-scale analysis[C]. SPIE,2015: 950111.

[11] LIU Xin, ZHANG He, CHEUNG Yiu-ming, et al. Efficient single image dehazing and denoising: an efficient multi-scale correlated wavelet approach[J]. Computer Vision and Image Understanding, 2017, 162: 23-33

[12] LIANG J, REN L, JU H, et al. Polarimetric dehazing method for dense haze removal based on distribution analysis of angle of polarization[J] Optics Express, 2015, 23: 26146-26157.

[13] 赵录建.基于最大和最小光强图像的偏振去雾方法[J].应用光学,2017,38(3): 416-420.

    ZHAO Lu-jian. Polarization defogging method based on maximum and minimum light intensity images[J]. Applied Optics, 2017,38(3): 416-420.

[14] KIM Jin-hwan, JANG Won-dong, SIM Jae-young, et al. Optimized contrast enhancement for real-tiom image and video dehazing[J]. Journal of Visual Communication and Image Representation, 2013,24: 410-425.

[15] FATTAL R. Single imagedehazing[J]. ACM Transactions on Graphics, 2008,27(3): 988-992.

[16] HE Kai-ming, SUN Jian, TANG Xiao-ou. Single umage haze removal using dark channel prior[C]. IEEE, 2009: 1956-1963.

[17] HE Kai-ming, SUN Jian, TANG Xiao-ou. Guide image filtering[C]. Proceedings of the 11th European Conference on Computer Vision, 2010: 1-14.

[18] TAREL J P, HAUTIERE N. Fast visibility restoration from a single color or gray level image[J]. IEEE International Conference on Computer Vision, 2009,30(2): 2201-2208.

[19] HAUTIRE N, TAREL J P, AUBERT D. Towards fog-free in-vehicle vision systems through contrast restoration[C]. IEEE, 2007: 1-8.

[20] CAI B, XU X, JIA K, et al. Dehazenet: an end-to-end system for single image haze removel[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198.

[21] ZHU Q, MAI J, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24: 3522-3533.

吕晓宁, 刘扬阳, 谭政, 吕群波. 一种偏振普适性多尺度实时的图像去雾算法[J]. 光子学报, 2019, 48(8): 0810003. L Xiao-ning, LIU Yang-yang, TAN Zheng, L Qun-bo. A Polarizing Universal Multi-scale and Real-time Image Defogging Algorithm[J]. ACTA PHOTONICA SINICA, 2019, 48(8): 0810003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!