激光与光电子学进展, 2020, 57 (23): 230605, 网络出版: 2020-12-08   

4PAM-FTN大气光传输系统在弱湍流信道中的误码性能 下载: 1000次

BER Performance of 4PAM-FTN Atmospheric Optical Communication System in a Weak Turbulent Channel
作者单位
兰州理工大学计算机与通信学院, 甘肃 兰州 730050
引用该论文

曹明华, 张伟, 张悦, 王惠琴, 武鑫, 毛一聪, 康中将. 4PAM-FTN大气光传输系统在弱湍流信道中的误码性能[J]. 激光与光电子学进展, 2020, 57(23): 230605.

Minghua Cao, Wei Zhang, Yue Zhang, Huiqin Wang, Xin Wu, Yicong Mao, Zhongjiang Kang. BER Performance of 4PAM-FTN Atmospheric Optical Communication System in a Weak Turbulent Channel[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230605.

参考文献

[1] Wang H Q, Wang X, Lynette K, et al. Performance analysis of MIMO wireless optical communication system with Q-ary PPM over correlated log-normal fading channel[J]. Optics & Laser Technology, 2018, 102: 153-159.

[2] 孙晶, 黄普明, 幺周石. Gamma-Gamma大气湍流下相干光通信分集接收技术研究[J]. 光学学报, 2018, 38(7): 0706002.

    Sun J, Huang P M, Yao Z S. Diversity reception technology in coherent optical communication over Gamma-Gamma atmospheric turbulence channel[J]. Acta Optica Sinica, 2018, 38(7): 0706002.

[3] 曹阳, 张勋, 彭小峰, 等. 空间光通信中基于多输入多输出的级联码方案研究[J]. 光学学报, 2018, 38(1): 0106003.

    Cao Y, Zhang X, Peng X F, et al. Cascade scheme based on multiple-input multiple-output in spatial optical communication[J]. Acta Optica Sinica, 2018, 38(1): 0106003.

[4] 李晓燕, 张鹏, 佟首峰. 大气湍流影响下基于自适应判决门限的逆向调制自由空间光通信系统误码率性能分析[J]. 中国激光, 2018, 45(6): 0606001.

    Li X Y, Zhang P, Tong S F. Bit error rate performance for modulating retro-reflector free space optical communication system based on adaptive threshold under atmospheric turbulence[J]. Chinese Journal of Lasers, 2018, 45(6): 0606001.

[5] Muhammad SS, BrandlP, LeitgebE, et al.VHDL based FPGA implementation of 256-ary PPM for free space optical links[C]∥2007 9th International Conference on Transparent Optical Networks, July 1-5, 2007, Rome, Italy.New York: IEEE Press, 2007: 174- 177.

[6] Huang X H, Li C Y, Lu H H, et al. WDM free-space optical communication system of high-speed hybrid signals[J]. IEEE Photonics Journal, 2018, 10(6): 1-7.

[7] Mazo J E. Faster-than-Nyquist signaling[J]. Bell Labs Technical Journal, 1975, 54(8): 1451-1462.

[8] 李双洋, 平磊, 白宝明, 等. 基于多层叠加传输的超奈奎斯特传输方案[J]. 通信学报, 2017, 38(9): 86-94.

    Li S Y, Ping L, Bai B M, et al. Faster-than-Nyquist transmission based on multi-layer superposition[J]. Journal on Communications, 2017, 38(9): 86-94.

[9] 曹明华, 武鑫, 杨顺信, 等. Log-normal湍流信道中超奈奎斯特传输系统的误码性能[J]. 光学精密工程, 2020, 28(2): 465-473.

    Cao M H, Wu X, Yang S X, et al. BER performance of faster-than-Nyquist communications under log-normal turbulence channel[J]. Optics and Precision Engineering, 2020, 28(2): 465-473.

[10] Kim Y JD, BajcsyJ. Binary faster than Nyquist optical transmission via non-uniform power allocation[C]∥ 2013 13th Canadian Workshop on Information Theory, June 18-21, 2013, Toronto, ON, Canada.New York: IEEE Press, 2013: 180- 185.

[11] Ishihara T, Sugiura S. Differential faster-than-Nyquist signaling[J]. IEEE Access, 2018, 6: 4199-4206.

[12] Sugiura S. Frequency-domain equalization of faster-than-Nyquist signaling[J]. IEEE Wireless Communications Letters, 2013, 2(5): 555-558.

[13] DinisR, CunhaB, GanhaoF, et al.A hybrid ARQ scheme for faster than Nyquist signaling with iterative frequency-domain detection[C]∥ 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), May 11-14, 2015, Glasgow, UK.New York: IEEE Press, 2015: 1- 5.

[14] Jana M, Medra A, Lampe L, et al. Pre-equalizedfaster-than-Nyquist transmission[J]. IEEE Transactions on Communications, 2017, 65(10): 4406-4418.

[15] Bedeer E, Ahmed M H, Yanikomeroglu H. A very low complexity successive symbol-by-symbol sequence estimator for faster-than-Nyquist signaling[J]. IEEE Access, 2017, 5: 7414-7422.

[16] Chi N, Zhao J Q, Wang Z X. Bandwidth-efficient visible light communication system based on faster-than-Nyquist pre-coded CAP modulation[J]. Chinese Optics Letters, 2017, 15(8): 080601.

[17] Liang S Y, Jiang Z H, Qiao L, et al. Faster-than-Nyquist precoded CAP modulation visible light communication system based on nonlinear weighted Look-Up table predistortion[J]. IEEE Photonics Journal, 2018, 10(1): 7900709.

[18] Sushank C, Lin B J, Tang X, et al. 40 Gbps-80 GHz PSK-MDM based Ro-FSO transmission system[J]. Optical and Quantum Electronics, 2018, 50(8): 1-9.

[19] 李雅倩, 朱文越, 钱仙妹. 超连续谱激光在湍流大气中传输特性的数值仿真研究[J]. 光子学报, 2019, 48(10): 1001002.

    Li Y Q, Zhu W Y, Qian X M. Numerical simulation of propagation performance of super-continuum laser in turbulent atmosphere[J]. Acta Photonica Sinica, 2019, 48(10): 1001002.

[20] 王惠琴, 姚宇, 曹明华. 激光信号在沙尘天气下的脉冲时延和展宽[J]. 光学学报, 2017, 37(7): 0729001.

    Wang H Q, Yao Y, Cao M H. Pulsedelay and broadening of laser signal in sand and dust weather[J]. Acta Optica Sinica, 2017, 37(7): 0729001.

[21] 吕婉婷. 基于PAM4和FTN的直接检测光纤传输系统研究[D]. 北京: 北京邮电大学, 2017: 1- 30.

    Lü WT. Study on direct detection of PAM4 signals with FTN for optical transmission system[D]. Beijing: Beijing University of Posts and Telecommunications, 2017: 1- 30.

[22] Wilson S G, Brandt-Pearce M, Cao Q L, et al. Optical repetition MIMO transmission with multipulse PPM[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(9): 1901-1910.

[23] Liu A J. Low complexity faster-than-Nyquist transmission method:CN105933255A[P].2016-09-07.

    刘爱军. 低复杂度超奈奎斯特传输方法: CN105933255A[P].2016-09-07.

[24] Abaza M, Mesleh R, Mansour A, et al. Performance analysis of space-shift keying over negative-exponential and log-normal FSO channels[J]. Chinese Optics Letters, 2015, 13(5): 051001.

[25] Alaka SP, Narasimhan TL, ChockalingamA. Generalized spatial modulation in indoor wireless visible light communication[C]∥ 2015 IEEE Global Communications Conference (GLOBECOM), December 6-10, 2015, San Diego, CA, USA.New York: IEEE Press, 2015: 1- 7.

[26] Chagnon M, Morsy-Osman M, Poulin M, et al. Experimental parametric study of a silicon photonic modulator enabled 112-Gb/s PAM transmission system with a DAC and ADC[J]. Journal of Lightwave Technology, 2015, 33(7): 1380-1387.

[27] Cao MH, Wang HQ, YaoY, et al. Performance evaluation of FSO communications under sand-dust conditions[J]. International Journal of Antennas and Propagation, 2019( 1): 1- 11.

曹明华, 张伟, 张悦, 王惠琴, 武鑫, 毛一聪, 康中将. 4PAM-FTN大气光传输系统在弱湍流信道中的误码性能[J]. 激光与光电子学进展, 2020, 57(23): 230605. Minghua Cao, Wei Zhang, Yue Zhang, Huiqin Wang, Xin Wu, Yicong Mao, Zhongjiang Kang. BER Performance of 4PAM-FTN Atmospheric Optical Communication System in a Weak Turbulent Channel[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230605.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!