激光与光电子学进展, 2014, 51 (1): 013201, 网络出版: 2013-12-26  

利用振幅关联函数研究超短脉冲中的时空耦合效应

Research on the Amplitude Couplings in Ultrashort Pulses Using Amplitude Correlation Functions
曾曙光 1,2,*刘雁 1
作者单位
1 三峡大学理学院, 湖北 宜昌 443002
2 四川大学电子信息学院, 四川 成都 610064
摘要
提出了一种利用振幅关联函数来分析超短脉冲中时空耦合效应的方法。定义了振幅关联度和关联带宽来衡量时空耦合的严重程度。给出了不同空间啁啾程度的脉冲光束的时空分布图。采用振幅关联函数研究了超短脉冲中的一些振幅耦合效应,如由角色散元件引起的一阶空间啁啾和角色散效应以及由衍射引起的二阶空间啁啾效应,并给出了相应的振幅关联度的解析表达式。结果表明,由于宽带激光脉冲的衍射和折射与频率密切相关,导致其振幅关联度下降并出现时空耦合。具体地,角色散引起的空间啁啾将会随着传输距离的增大而减弱直至趋于一定值。另外,由自由空间衍射引起的二阶空间啁啾效应也会随着传输距离的增大而减弱。最后,由角色散元件引起的角色散效应并不会随着传输距离的变化而变化。
Abstract
A novel approach for analyzing spatiotemporal couplings in ultrashort pulses is presented using amplitude correlation functions. Amplitude correlation degrees and correlation bandwidth are defined, which can readily indicate the severity of spatiotemporal couplings. Intuitive pictures of pulses with different amounts of spatial chirp are given. With amplitude correlation functions, the amplitude couplings in ultrashort pulses, such as the first-order spatial chirp and angular dispersion caused by angular dispersion elements and the second-order spatial chirp caused by diffraction effects, are studied, and corresponding analytical expressions for the amplitude correlation degrees are given. It can be found that the refraction and diffraction of broadband optical pulses are frequency dependent, resulting in the decrease of amplitude correlation degree and leading to a coupling of spatial and temporal effects. Specifically the severity of the spatial chirp caused by an angular disperser increases with the increase of propagation distance and finally tends to be constant. Moreover, as the diffraction of ultrashort pulsed Gaussian beams is frequency dependent, the second-order spatial chirp of ultrashort pulsed Gaussian beams caused by diffraction effects will decrease during propagation. Finally, the severity of angular dispersion caused by an angular disperser does not vary as the beam propagates in the free space.网络出版日期: 2013-12-11
参考文献

[1] Dorrer C, Walmsley I A. Simple linear technique for the measurement of space-time coupling in ultrashort optical pulses [J]. Opt Lett, 2002, 27(21): 1947-1949.

[2] 刘强生, 岑兆丰, 李晓彤, 等. 超短脉冲通过实际光学系统的时空特性分析[J]. 光学学报, 2013, 33(1): 0132001.

    Liu Qiangsheng, Cen Zhaofeng, Li Xiaotong, et al.. Spatial-temporal-property analysis of ultrashort pulse propagating through real optical system [J]. Acta Optica Sinica, 2013, 33(1): 0132001.

[3] Porras M A. Ultrashort pulsed Gaussian light beams [J]. Phys Rev E, 1998, 58(1): 1086-1093.

[4] J C Diels, W Rudolph. Ultrashort Laser Pulse Phenomena [M]. London: Academic Press, 2006. 135-136.

[5] I Walmsley, L Waxer, C Dorrer. The role of dispersion in ultrafast optics [J]. Rev Sci Instrum, 2001, 72(1): 1-29.

[6] Frei F, Galler A, Feurer T. Space-time coupling in femtosecond pulse shaping and its effects on coherent control [J]. J Chem Phys, 2009, 130(3): 034302.

[7] Tanabe T, Kannari F, Korte F, et al.. Influence of spatiotemporal coupling induced by an ultrashort laser pulse shaper on a focused beam profile [J]. Appl Opt, 2005, 44(6): 1092-1098.

[8] S Akturk, X Gu, P Gabolde, et al.. The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams [J]. Opt Express, 2005, 13(21): 8642-8661.

[9] Akturk S, Kimmel M, O′Shea P, et al.. Measuring spatial chirp in ultrashort pulses using single-shot frequency-resolved optical gating [J]. Opt Express, 2003, 11(1): 68-78.

[10] Gu X, Akturk S, Trebino R. Spatial chirp in ultrafast optics [J]. Opt Commun, 2004, 242(4): 599-604.

[11] Varjú K, Kovács A P, Kurdi G, et al.. High-precision measurement of angular dispersion in a CPA laser [J]. Appl Phys B, 2002, 74(suppl): s259-s263.

[12] Varjú K, Kovács A P, Osvay K, et al.. Angular dispersion of femtosecond pulses in a Gaussian beam [J]. Opt Lett, 2002, 27(22): 2034-2036.

[13] Akturk S, Kimmel M, O′Shea P, et al.. Measuring pulse-front tilt in ultrashort pulses using GRENOUILLE [J]. Opt Express, 2003, 11(5): 491-501.

[14] Akturk S, Gu X, Zeek E, et al.. Pulse-front tilt caused by spatial and temporal chirp [J]. Opt Express, 2004, 12(19): 4399-4410.

[15] Gabolde P, Lee D, Akturk S, et al.. Describing first-order spatio-temporal distortions in ultrashort pulses using normalized parameters [J]. Opt Express, 2007, 15(1): 242-251.

[16] Zeng S, Dan Y, Zhang B. Describing second-order spatiotemporal couplings in ultrashort pulses using correlation coefficient [J]. J Opt Soc Am B, 2009, 26(10): 1869-1874.

[17] Shu Guang Zeng, You Quan Dan, Bin Zhang, et al.. Describing spatiotemporal couplings in ultrashort pulses using coupling coefficients [J]. Chin Phys B, 2011, 20(11): 114213.

[18] T M Apostol. Mathematical Analysis [M]. Boston: Addison-Wesley Pub. Co., 1974.

[19] Zeng S, Dan Y, Zhang B, et al.. Describing spatiotemporal couplings in ultrashort pulses using amplitude coupling coefficients [C]. IEEE 2010 Symposium on Photonics and Optoelectronic (SOPO), 2010.

[20] Martinez O E. Grating and prism compressors in the case of finite beam size [J]. J Opt Soc Am B, 1986, 3(7): 929-934.

[21] Li D, Lv X, Zeng S, et al.. Beam spot size evolution of Gaussian femtosecond pulses after angular dispersion [J]. Opt Lett, 2008, 33(2): 128-130.

[22] Zeng S, Li D, Lv X, et al.. Pulse broadening of the femtosecond pulses in a Gaussian beam passing an angular disperser [J]. Opt Lett, 2007, 32(9): 1180-1182.

[23] Porras M A. Diffraction effects in few-cycle optical pulses [J]. Phys Rev E, 2002, 65(2): 026606.

[24] A Yariv. Optical Electronics in Modern Communications (5th edn) [M]. Oxford: Oxford University Press, 1997.

[25] M Born, E Wolf. Principles of Optics [M]. Cambridge: Cambridge University Press, 1999.

[26] Dorrer C, Kosik E M, Walmsley I A. Spatio-temporal characterization of the electric field of ultrashort optical pulses using two-dimensional shearing interferometry [J]. Appl Phys B, 2002, 74(suppl.): s209-s217.

[27] R Trebino.Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses [M]. Berlin: Springer, 2002.

[28] Bowlan P, Gabolde P, Coughlan M A, et al.. Measuring the spatiotemporal electric field of ultrashort pulses with high spatial and spectral resolution [J]. J Opt Soc Am B, 2008, 25(6): A81-A92.

曾曙光, 刘雁. 利用振幅关联函数研究超短脉冲中的时空耦合效应[J]. 激光与光电子学进展, 2014, 51(1): 013201. Zeng Shuguang, Liu Yan. Research on the Amplitude Couplings in Ultrashort Pulses Using Amplitude Correlation Functions[J]. Laser & Optoelectronics Progress, 2014, 51(1): 013201.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!