红外与激光工程, 2018, 47 (2): 0204005, 网络出版: 2018-04-26   

Aerodynamic property of artificial biological extinction material

Aerodynamic property of artificial biological extinction material
作者单位
1 脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
2 电子制约技术安徽省重点实验室, 安徽 合肥 230037
摘要
人工制备的几种生物材料生产成本低、密度小、形态可控、安全环保, 在可见光和红外等波段具有较好的消光能力, 可作为一种新型消光材料, 弥补无机消光材料的不足。针对当前军、民用领域对新型生物消光材料的需求, 将生物消光材料中的絮状生物颗粒等效为子弹玫瑰花型粒子, 根据牛顿第二定律和梯度-输运理论, 建立生物消光材料沉降模型和扩散模型, 并讨论絮状生物颗粒结构和风速、大气稳定度对生物消光材料空气动力学特性的影响。结果表明: 分枝数目、长度、半径决定絮状生物颗粒结构; 在某种特定条件下, 絮状生物颗粒沉降速度较等体积球颗粒沉降速度降低了50%; 烟团遮蔽面积可达20 m2以上。模型的构建将为生物消光材料发展及实际应用提供理论基础。
Abstract
Several kinds of artificial biological materials have the characteristics of low production cost, low mass density, controllable morphology, safety and environmental friendliness, and better extinction ability in the visible and infrared bands, which can be used as new extinction materials to make up for the shortage of inorganic extinction materials. With the increasing demands for new biological extinction materials in military and civilian fields, the flocculent biological particles in the biological extinction material are equivalent to bullet rosette particles. According to Newton′s second law and gradient transport theory, the sedimentation and diffusion models of biological extinction material were established. The structures of flocculent biological particles and wind speed and atmospheric stability′ influences on aerodynamic characteristics of biological extinction materials were discussed. The results indicate that the structures of flocculent biological particles are controlled by the number of branches, as well as their length and radius. Under given conditions, the settling rate of flocculent biological particle decreased by 50% compared with that of equal volume sphere particle. And the max covering area of smoke can reach more than 20 m2. The model provides a theoretical basis for the further development and use of biological extinction materials.
参考文献

[1] Wang P, Liu H, Zhao Y, et al. Electromagnetic attenuation characteristics of microbial materials in the infrared band[J]. Applied Spectroscopy, 2016, 70(9): 1456-1463.

[2] 顾有林, 王成, 杨丽, 等. 黑曲霉孢子灭活前后红外消光特性[J]. 红外与激光工程, 2015, 44(1): 36-41.

    Gu Youlin, Wang Cheng, Yang Li, et al. Infrared extinction before and after aspergillus niger spores inactivation[J].Infrared and Laser Engineering, 2015, 44(1): 36-41. (in Chinese)

[3] 李乐, 胡以华, 顾有林, 等. 黑曲霉孢子红外波段消光性能研究[J]. 红外与激光工程, 2014, 43(7): 2175-2179.

    Li Le, Hu Yihua, Gu Youlin, et al. Infrared extinction performance of Aspergillus niger spores[J]. Infrared and Laser Engineering, 2014, 43(7): 2175-2179. (in Chinese)

[4] 李乐, 胡以华, 顾有林, 等. 梨花粉红外波段复折射率测定与分析[J]. 光谱学与光谱分析, 2015, 35(1): 89-92.

    Li Le, Hu Yihua, Gu Youlin, et al. Measurement and analysis on complex refraction indices of pear pollen in infrared band[J]. Spectroscopy and Spectral Analysis, 2015, 35(1): 89-92. (in Chinese)

[5] 孙杜娟, 胡以华, 王勇, 等. 生物细胞亚显微结构对光散射特性的影响[J]. 光子学报, 2013, 42(6): 710-714.

    Sun Dujuan, Hu Yihua, Wang Yong, et al. Sub-microstructures′ influences on cell′s scattering prosperities [J]. Acta Photonica Sinica, 2013, 42(6): 710-714. (in Chinese)

[6] 孙杜娟, 胡以华, 李乐. 金属化花粉红外、微波特性测试与分析[J]. 红外与激光工程, 2013, 42(9): 2531-2535.

    Sun Dujuan, Hu Yihua, Li Le. Test and analysis of infrared and microwave characteristics of metallic farinas[J]. Infrared and Laser Engineering, 2013, 42(9): 2531-2535. (in Chinese)

[7] 孙杜娟, 胡以华, 顾有林, 等. 金属化生物颗粒的制备与性能测试[J]. 光子学报, 2013, 42(5): 555-558.

    Sun Dujuan, Hu Yihua, Gu Youlin, et al. Preparation and performance testing of metallic biologic particles[J]. Acta Photonica Sinica, 2013, 42(5): 555-558. (in Chinese)

[8] 赵欣颖, 胡以华, 顾有林, 等. 微生物凝聚粒子群的激光透射率研究[J]. 光学学报, 2015, 35(6): 0616001.

    Zhao Xinying, Hu Yihua, Gu Youlin, et al. Transmittance of laser in the microorganism aggregated particle swarm[J]. Acta Optica Sinica, 2015, 35(6): 0616001. (in Chinese)

[9] 乔小晶, 陆政, 韩晓利. 烟雾颗粒沉降速度研究[J]. 火工品, 1997: 30-33.

    Qiao Xiaojing, Lu Zheng, Han Xiaoli. Study on the deposition velocity of smoke particles[J]. Initiators and Pyrotechnics, 1997: 30-33. (in Chinese)

[10] 姚国新. 基于颗粒受力的粗颗粒沉降性质研究[D]. 赣州: 江西理工大学, 2014.

    Yao Guoxin. Coarse particle settling properties study based on particle analysis[D]. Ganzhou: Jiangxi University of Science and Technology, 2014. (in Chinese)

[11] 保石, 张紫浩. 烟幕云团运动特性分析[J]. 光电技术应用, 2015, 30(4): 20-23.

    Bao Shi, Zhang Zihao. Analysis of motion characteristics of smoke cloud particles[J]. Electro-optic Technology Application, 2015, 30(4): 20-23. (in Chinese)

[12] 刘健. 城市小区环境中生物剂气溶胶的扩散模拟方法研究[D]. 北京: 军事医学科学院, 2012.

    Liu Jian. Research on the simulation method of bioaerosols′ diffusion in a housing estate[D]. Beijing: Academy of Military Medical Sciences, 2012. (in Chinese)

[13] 孙杜娟, 胡以华, 李乐. 气溶胶“沉降-扩散”联合动态数值模拟[J]. 红外与激光工程, 2014, 43(2): 449-453.

    Sun Dujuan, Hu Yihua, Li Le. Numerical simulation of aerosol sedimentation and diffusion[J]. Infrared and Laser Engineering, 2014, 43(2): 449-453. (in Chinese)

[14] 孙贤明. 大气中离散随机介质的波传播和散射特性研究[D]. 西安: 西安电子科技大学, 2007.

    Sun Xianming. Study on wave propagation and scattering characteristics of atmospheric discrete random media [D]. Xi′an: Xidian University, 2007. (in Chinese)

[15] 潘功配, 杨硕. 烟火学[M]. 北京: 北京理工大学出版社,1997.

    Pan Gongpei, Yang Shuo. Pyrotechnics[M]. Beijing: Beijing Institute of Technology Press, 1997. (in Chinese)

[16] 姚禄玖, 高钧麟, 肖凯涛, 等. 烟幕理论与测试技术[M]. 北京: 国防工业出版社, 2004.

    Yao Lujiu, Gao Junlin, Xiao Kaitao, et al. Theory and Testing Technique of Smoke[M]. Beijing: National Defense Industry Press, 2004. (in Chinese)

[17] 郑其良, 钱志伟. 斯托克斯(Stokes)定律在混浊型饮料中的应用[J]. 饮料工业, 1998, 1(1): 24-26.

    Zheng Qiliang, Qian Zhiwei. Application of the Stokes law in cloudy beverages[J]. Beverage Industry, 1998, 1(1): 24-26. (in Chinese)

[18] Corkum P B. Plasma perspective on strong-field multiphoton ionization[J]. Phys Rev Lett, 1993, 71(13): 1994-1997.

[19] 制定地方大气污染物排放标准的技术方法.(GBT 3840-1991)

    Technical methods for making local emission standards of air pollutants. (GBT 3840-1991) (in Chinese)

[20] Pasquill F. The estimation of the dispersion of windborne material[J]. Meteorol Mag, 1961, 90: 33-49.

[21] 童志权. 大气环境影响评价[M]. 北京: 中国环境科学出版社, 1988.

    Tong Zhiquan. Environmental Impact Assessment on Air[M]. Beijing: China Environmental Science Press, 1988. (in Chinese)

黄宝锟, 胡以华, 顾有林, 赵义正, 李乐, 赵欣颖. Aerodynamic property of artificial biological extinction material[J]. 红外与激光工程, 2018, 47(2): 0204005. Huang Baokun, Hu Yihua, Gu Youlin, Zhao Yizheng, Li Le, Zhao Xinying. Aerodynamic property of artificial biological extinction material[J]. Infrared and Laser Engineering, 2018, 47(2): 0204005.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!