激光与光电子学进展, 2020, 57 (7): 071601, 网络出版: 2020-03-23   

稀土掺杂氟化物多波段上转换激光研究进展 下载: 2391次封面文章特邀综述

Research Progress on Rare Earth Doped Fluoride Multiband Upconversion Laser
作者单位
1 昆明理工大学材料科学与工程学院, 云南 昆明 650093
2 香港理工大学应用物理系, 香港 999077
3 云南省能源研究院有限公司, 云南 昆明 650093
图 & 表

图 1. 980 nm三脉冲激励系统的实验装置[37]

Fig. 1. Experimental setup of a 980 nm 3-pulse excitation system[37]

下载图片 查看原文

图 2. 室温下的三脉冲激发方案,直径为80 μm的瓶状几何形状的微腔的激光光谱。插图为在不同激发功率下的微腔图像[37]

Fig. 2. Lasing spectra of the microcavity with a bottle-like geometry of diameter equal to 80 μm under 3-pulse excitation scheme at room temperature. The insets show the images of the microcavity under different excitation powers[37]

下载图片 查看原文

图 3. Yb3+、Er3+共掺杂的Ba2LaF7纳米晶体能级图。(a)简化模型;(b)温度为(i)小于300 K (ii)等于300 K (iii)大于300 K时4S3/22H11/2能级间的声子辅助粒子反转;(c)在连续泵浦功率为65 mW·cm-2下,微晶玻璃中523 nm和540 nm处的光增益与温度关系曲线图;(d) 200 K和(e) 473 K下的激光光谱[38]

Fig. 3. Energy-level diagrams of Er3+/Yb3+ codoped Ba2LaF7 nanocrystals. (a) Simplified model; (b) population inversion via phonon-assisted process at temperature T (i) <300 K, (ii)=300 K, and (iii) >300 K between 4S3/2 and 2H11/2 states; (c) optical gain versus T of the glass-ceramic at emission peak wavelength λ of 523 and 540 nm at PCW=65 mW·cm-2; laser spectra at temperature (d) 200 K and

下载图片 查看原文

图 4. (a)等离子体光谱测试系统示意图;(b)有无Ag薄膜的纳米晶不同波段的发光与激发功率的关系;(c)有无Ag薄膜的纳米晶在相同泵浦功率(3.5 mJ/cm2)激发下的光谱图[39]

Fig. 4. (a) Experimental setup for the PL and lasing spectra measurement of a NaYF4 microrod; (b) light-light curves of the hexagonal microrods with and without deposition on the Ag-coated substrate for different wavelengths; (c) corresponding emission spectra of the hexagonal microrods with and without deposition on the Ag coated substrate at the pumped power of 3.5 mJ/cm2 [39]

下载图片 查看原文

图 5. Ag纳米柱阵列与上转换纳米颗粒进行耦合示意图[40]

Fig. 5. Schematic diagram of upconverting nanolasing on Ag nanopillar arrays at room temperature[40]

下载图片 查看原文

图 6. (a)不同泵浦功率下等离子体发射光谱图; (b)泵浦功率与发射峰半峰全宽和发光强度的关系图[40]

Fig. 6. (a) Emission spectra of plasma at different pump powers; (b) relation between pump power, full width at half maximum of emission peak and luminous intensity[40]

下载图片 查看原文

图 7. (a)上转换发射强度与内壳层厚度(1~17 nm);(b)简化的能级图,分别显示了Tm3+和Gd3+中的能隙;(c)纳米粒子在不同激发功率(脉冲激光)下的增益光谱。插图为在310.5 nm波长处的相应光学增益与泵浦功率的关系,直线是测量数据的线性回归;(d)从Dm=20 μm的腔中测得的单模激光光谱[42]

Fig. 7. (a) Upconversion emission intensity versus inner shell thickness (1-17 nm); (b) simplifified energy level diagram showing the energy gaps in Tm3+ and Gd3+activators, respectively; (c) gain spectra of nanoparticles at different excitation powers (pulsed lasers). The inset gives the corresponding optical gain versus pump power at a wavelength of 310.5 nm. The straight line is the linear regression of the measured data; (d) single mode lasing spectra measured from a microreson

下载图片 查看原文

图 8. (a) NaYbF4∶Gd/Tm (40/1%)@NaGdF4@CaF2和NaYbF4∶Gd/Tm (40/1%)@NaGdF4@CaF2∶Ce (15%)纳米颗粒在980 nm激发下的上转换发射光谱。插图为相应样品的Gd3+时间衰减曲线;(b)激光发射测量简易光学装置示意图;(c) NaYbF4∶Gd/Tm (40/1%)@NaGdF4@CaF2∶Ce (15%)纳米颗粒在不同观测角度下的发射图谱[43]

Fig. 8. (a) Upconversion emission spectra of the α -NaYbF4∶Gd/Tm (40/1%)@NaGdF4@CaF2 and the α -NaYbF4∶Gd/Tm (40/1%)@NaGdF4@CaF2∶Ce (15%) nanoparticles. The spectra were obtained from water dispersions of the nanoparticles by excitation at 980 nm. Inset: Time decay curves of Gd3+ in the corresponding samples; (b) schematic illustration of the optical setup for the measurement of lasing emissions; (c) emission spectra of the NaY

下载图片 查看原文

图 9. 微激光阵列的典型制造工艺示意图[44]

Fig. 9. Schematic illustration showing the typical fabrication procedures of the proposed microlaser array[44]

下载图片 查看原文

图 10. (a)直径从10 μm到100 μm的激光光谱,右边图像为相应的SEM图像; (b) UCNCs在厚度为300 nm微激光器上的激光发射图和(c)相应的输出强度与泵浦功率的关系曲线图;(d) UCNCs在厚度为130 nm微激光器上的激光发射图和(e)相应的输出强度与泵浦功率的关系曲线图[44]

Fig. 10. (a) Lasing spectra as a function of diameter ranging from 10 to 100 μm, and the corresponding SEM images of each microdisk on the right of the image; (b) laser emission diagram of UCNCs on a 300 nm micro-laser and (c) relationship between the corresponding output intensity and pump power; (d) laser emission diagram of UCNCs on a 130 nm micro-laser and (e) relationship between the corresponding output intensity and pump power[44]

下载图片 查看原文

图 11. (a)湿法退火工艺示意图;(b)退火前KLu2F7∶38%Yb3+,2%Er3+纳米晶的HAADF-STEM图像;(c) 240 ℃退火后纳米晶的HAADF-STEM图像;(d)图(b)框选区域沿橙色箭头所指方向结晶性表征;(e)图(c)框选区域绿色箭头所指方向结晶性表征;(f)图(b)框选区域放大图;(g)图(c)框选区域放大图[46]

Fig. 11. (a) Schematic diagram of the wet chemical annealing process of KLu2F7∶38%Yb3+, 2%Er3+ UCNPs; HAADF-STEM images of KLu2F7∶38%Yb3+, 2%Er3+ UCNPs (b) before and (c) after annealing at 240 ℃; intensity profiles recorded by scanning along the directions of the (d) orange and (e) green arrows of the UCNPs as shown in Fig. (b) and (c), respectively; enlarged crystal edge structure images (f) before and (g) after ann

下载图片 查看原文

图 12. (a)直径5 μm的聚苯乙烯球表面涂覆ELNPS后的SEM图;(b)微球腔截面TEM图;(c)微球激光的原理图;插图:激光在微球中的运动示意图;(d)NaGdF4纳米晶壳层厚度对激光阈值的影响[47]

Fig. 12. (a) Scanning electron micrograph of a 5 μm-diameter polystyrene bead coated with ELNPs; (b) transmission electron micrograph of a cross-section of the microsphere cavity; (c) schematic of excitation and lasing in microsphere. Inset: schematic of laser movement in microspheres; (d) influence of NaGdF4 nanocrystal shell thickness on laser threshold[47]

下载图片 查看原文

图 13. (a) Pr3+/Gd3+共掺杂的Lu6O5F8纳米晶体能量传递机制示意图;(b) Lu6O5F8∶Pr/Gd (1/5%)@Lu6O5F8纳米晶体在450 nm二极管激光激励下的上转换发射光谱;(c)在不同直径的微谐振腔中,输出强度与激励功率的关系;(d)光增益随泵浦功率的变化[48]

Fig. 13. (a) Proposed energy transfer mechanisms showing the bluepumped upconversion process in Pr3+/Gd3+codoped Lu6O5F8 nanocrystals; (b) upconversion emission spectrum of the Lu6O5F8∶Pr/Gd (1/5%)@Lu6O5F8 nanocrystals under excitation of 450 nm diode laser; (c) output intensity versus excitation power in microresonator of various diameters; (d) corresponding optical gain versus pump p

下载图片 查看原文

黎浩, 崔珍珍, 陈卫清, 乔玉芳, 曹疆艳, 张明宇, 杨玺, 余雪, 余兆丰, 邱建备, 徐旭辉. 稀土掺杂氟化物多波段上转换激光研究进展[J]. 激光与光电子学进展, 2020, 57(7): 071601. Hao Li, Zhenzhen Cui, Weiqing Chen, Yufang Qiao, Jiangyan Cao, Mingyu Zhang, Xi Yang, Xue Yu, Siu Fung Yu, Jianbei Qiu, Xuhui Xu. Research Progress on Rare Earth Doped Fluoride Multiband Upconversion Laser[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071601.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!