光电工程, 2017, 44 (4): 381, 网络出版: 2017-07-10   

液体辅助激光加工过程中压力检测及应用研究进展

Research progress of pressure detection and applications in liquid-assisted laser machining
作者单位
1 广东工业大学机电工程学院,广州 510006
2 南京航空航天大学机电学院,南京 210016
3 江苏省精密与微细制造技术重点实验室,南京 210016
摘要
液体辅助激光加工是一种复合制造技术,凭借其特有的特点及优势,在相关领域受到广泛的关注和应用,同时也成为激光与液体介质相互作用研究领域的一大热点。本文综述了液体辅助激光加工过程中冲击波和高速微射流的压力研究现状,简述了液体辅助激光加工过程中压力现象产生的机理、压力的基本特征以及影响压力的因素,重点介绍了液体辅助激光加工过程中产生的冲击波、微射流等冲击压力的检测方法和最新研究进展,并对各检测方法的特点做出总结。最后介绍了液体辅助激光加工在相关领域的应用,并对该技术的发展前景作出展望。
Abstract
Liquid-assisted laser machining is a composite manufacturing technology. Depending on its unique characteristics and advantages, it already has been received widely attention and applications in the field of manufacturing. The technology has become a hot spot in the interaction between laser and liquid medium. In this paper, the research status of shock wave and high-speed micro-jet pressure in liquid-assisted laser process is re-viewed. The mechanism, the basic characteristics of pressure and the factors that affect the pressure in the pro-cess of liquid-assisted laser machining are resumed. The research method and the latest progress of the pres-sure phenomenon in the laser wet machining are mainly introduced. The advantages and disadvantages of these pressure detection methods are summarized. Finally, the applications of liquid-assisted laser machining in related fields are introduced and the prospects of this technology are summarized.
参考文献

[1] Kruusing A. Handbook of liquids-assisted laser processing [M]. Amsterdam: Elsevier Ltd, 2008.

[2] Huang Z Q, Hong M H, Do T B M, et al. Laser etching of glass substrates by 1064 nm laser irradiation[J]. Applied Physics A, 2008, 93(1):159-163.

[3] Lee T, Jang D, Ahn D, et al. Effect of liquid environment on laser-induced backside wet etching of fused silica[J]. Journal of Applied Physics, 2010, 107(3):033112-033112-8.

[4] Gupta P K, Ghosh N, Patel H S. Lasers and laser tissue interaction[M]. London: Imperial College Press, 2014: 123-151.

[5] Peel C. Laser induced breakdown spectrocscopy for elemental analysis in aqueous media[D]. Cranfield: Cranfield University, 2012.

[6] 刘涛, 王江安, 宗思光, 等. 基于激光水下爆炸声源的声探测技术[J]. 强激光与粒子束, 2012, 24(12): 2822-2826.

    Liu Tao, Wang Jiang’an, Zong Siguang, et al. Detecting technology based on laser-induced sound by underwater ex-plosion [J]. High Power Laser and Particle Beams, 2012, 24(12): 2822-2826.

[7] Brujan E A, Ikeda T, Yoshinaka K, et al. The final stage of the collapse of a cloud of bubbles close to a rigid boundary[J]. Ultrasonics Sonochemistry, 2011, 18(1): 59-64.

[8] 刘涛, 王江安, 宗思光, 等. 激光空泡在刚性壁面附近空蚀特性[J]. 强激光与粒子束, 2011, 23(2): 298-302.

    Liu Tao, Wang Jiang’an, Zong Siguang, et al. Cavitation erosion by laser-generated bubble near rigid boundary[J]. High Power Laser and Particle Beams, 2011, 23(2): 298-302.

[9] Naudé C F, Ellis A T. On the mechanism of cavitation damage by non-hemispherical cavities collapsing in contact with a solid boundary[J]. Journal of Basic Engineering, 1961, 83(4): 648-656.

[10] Benjamin T B, Ellis A T. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries[J]. Philosophical Transactions of the Royal Society A: Mathe-matical, Physical and Engineering Sciences, 1966, 260(1110): 221-240.

[11] 刘秀梅. 液体参量对激光空泡产生和溃灭的影响研究[D]. 南京: 南京理工大学, 2009.

    Liu Xiumei. Effect of liquid parameters on expansion and collapse of laser-induced cavitation bubble[D]. Nanjing: Nan-jing University of Science and Technology, 2009.

[12] 贺杰. 表面张力对光致空泡动力学特性影响的实验研究[D]. 南京: 南京理工大学, 2008.

    He Jie. Effect of liquid surface tension on the dynamic char-acteristics of laser-induced cavitation bubble[D]. Nanjing: Nanjing University of Science and Technology, 2008.

[13] Popinet S, Zaleski S. Bubble collapse near a solid boundary: a numerical study of the influence of viscosity[J]. Journal of Fluid Mechanics, 2002, 464: 137-163.

[14] 韩冰. 激光空泡相互作用及非对称溃灭的力学特性研究[D]. 南京: 南京理工大学, 2013.

    Han Bing. Interaction of laser-induced cavitation bubbles and mechanical effects from the nonspherical bubble collapse[D]. Nanjing: Nanjing University of Science and Technology, 2013.

[15] Liu Xiumei, He Jie, Lu Jian, et al. Effect of surface tension on a liquid-jet produced by the collapse of a laser-induced bubble against a rigid boundary[J]. Optics & Laser Technology, 2009, 41(1): 21-24.

[16] Yang Yuanxiang, Wang Qianxi, Keat T S. Dynamic features of a laser-induced cavitation bubble near a solid boundary[J]. Ultrasonics Sonochemistry, 2013, 20(4): 1098-1103.

[17] Vogel A, Lauterborn W, Timm R. Optical and acoustic inves-tigations of the dynamics of laser-produced cavitation bubbles near a solid boundary[J]. Journal of Fluid Mechanics, 1989, 206: 299-338.

[18] 赵瑞. 激光等离子体冲击波传输及空泡动力学特性研究[D]. 南京: 南京理工大学, 2007.

    Zhao Rui. Studies on characteristic of laser-induced plasma shock wave evolution and cavitation bubble dynamics[D]. Nanjing: Nanjing University of Science and Technology, 2007.

[19] Zhao Rui, Liang Zhongcheng, Xu Rongqing, et al. Dynamics of laser-induced cavitation bubble near solid boundary[J]. Jap-anese Journal of Applied Physics, 2008, 47(7): 5482-5485.

[20] 宗思光. 激光击穿液体介质的空化与声辐射[M]. 北京: 国防工业出版社, 2013.

    Zong Siguang. Cavitation and sound radicalization with la-ser-induced breakdown in liquid[M]. Beijing: National Defence Industry Press, 2013.

[21] 谢小柱, 苑学瑞, 陈蔚芳, 等. 激光诱导空泡技术研究和应用新进展[J]. 激光与光电子学进展, 2013, 50(8): 080017.

    Xie Xiaozhu, Yuan Xuerui, Chen Weifang, et al. New devel-opment and applications of laser-induced cavitation bubbles[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080017.

[22] 韩冰, 张海, 于晓光, 等. 一种测定空化水喷丸工艺中冲击压力场分布规律的方法[J]. 振动与冲击, 2013, 32(2): 6-8, 23.

    Han Bing, Zhang Hai, Yu Xiaoguang, et al. A method for measuring distribution of impact pressure field in water-jet cavitation peening processing[J]. Journal of Vibration and Shock, 2013, 32(2): 6-8, 23.

[23] 宗思光, 王江安, 马治国. 激光空泡的溃灭发光及冲击波辐射[J]. 中国激光, 2010, 37(4): 1000-1006.

    Zong Siguang, Wang Jiang’an, Ma Zhiguo. Lighting and shock wave emission of laser cavitation bubble collapse[J]. Chinese Journal of Lasers, 2010, 37(4): 1000-1006.

[24] 胡满凤. 激光背向湿式蚀刻加工蓝宝石过程中光诱导气泡和微射流流场分布研究[D]. 广州: 广东工业大学, 2014.

    Hu Manfeng. Study on laser induced cavitation bubbles and flow field distribution during laser-induced backside wet etching sapphire substrates[D]. Guangzhou: Guangdong University of Technology, 2014.

[25] Xie X Z. Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation[J]. Journal of Laser Micro/Nanoengineering, 2013, 8(3): 259-265.

[26] 李贝贝. 环境参数对激光空泡动力学行为的影响及测试方法研究[D]. 南京: 南京理工大学, 2012.

    Li Beibei. Study on the test methods and effects of ambient parameters for the laser-induced cavitation bubble[D]. Nanjing: Nanjing University of Science and Technology, 2012.

[27] 徐荣青, 陈笑, 沈中华, 等. 固体壁面附近激光空泡的动力学特性研究[J]. 物理学报, 2004, 53(5): 1413-1418.

    Xu Rongqing, Chen Xiao, Shen Zhonghua, et al. Dynamics of laser-induced cavitation bubbles near solid boundaries[J]. Acta Physica Sinica, 2004, 53(5): 1413-1418.

[28] Xu R Q, Chen X, Shen Z H, et al. A fiber-optic diagnostic technique for mechanical detection of the laser-metal interac-tion underwater[J]. Physics of Fluids, 2004, 16(3): 832-835.

[29] 蒋红亮. 激光空泡动力学特性的研究[D]. 南京: 南京邮电大学, 2010.

    Jiang Hongliang. Study on dynamic characteristics of laser-generated bubble[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2010.

[30] Lush P A. Impact of a liquid mass on a perfectly plastic solid[J]. Journal of Fluid Mechanics, 1983, 135: 373-387.

[31] 李贝贝, 张宏超, 倪晓武, 等. 不同环境压强下激光空泡溃灭射流的实验研究[J]. 激光技术, 2012, 36(6): 749-753.

    Li Beibei, Zhang Hongchao, Ni Xiaowu, et al. Experiment investigation on the liquid jet of laser-induced bubble in dif-ferent ambient pressures[J]. Laser Technology, 2012, 36(6): 749-753.

[32] 宗思光, 王江安, 王雨虹. 脉冲激光击穿水介质特性的实验研究[J]. 光电工程, 2008, 35(11): 68-72.

    Zong Siguang, Wang Jiang’an, Wang Yuhong. Experiment investigation of water breakdown characteristic by high power laser[J]. Opto-Electronic Engineering, 2008, 35(11): 68-72.

[33] 李胜勇, 刘晓然, 王江安, 等. 含气量对粘性液体中空泡声波频谱特性的影响[J]. 光电子·激光, 2012, 23(6): 1206-1210.

    Li Shengyong, Liu Xiaoran, Wang Jiang’an, et al. Influence of gas content on spectrum properties of laser-induced cavitation bubble collapse sound waves in viscous liquid[J]. Journal of Optoelectronics·Laser, 2012, 23(6): 1206-1210.

[34] 李胜勇, 王晓宇, 王江安, 等. 环境压强对激光空泡声波特性影响的实验研究[J]. 红外与激光工程, 2015, 44(3): 879-883.

    Li Shengyong, Wang Xiaoyu, Wang Jiang’an, et al. Experi-mental investigation of influence of ambient pressure on properties of laser-induced cavitation bubble collapse sound waves[J]. Infrared and Laser Engineering, 2015, 44(3): 879-883.

[35] 闫潇敏, 李芝绒, 仲凯, 等. 聚偏氟乙烯传感器水中爆炸压力测量研究[J]. 科学技术与工程, 2015, 15(9): 189-192.

    Yan Xiaomin, Li Zhirong, Zhong Kai, et al. Research on measurement of underwater explosion pressure with PVDF sensor[J]. Science Technology and Engineering, 2015, 15(9): 189-192.

[36] 胡亚峰, 刘建青, 顾文彬, 等. PVDF应力测试技术及其在多孔材料爆炸冲击实验中的应用[J]. 爆炸与冲击, 2016, 36(5): 655-662.

    Hu Yafeng, Liu Jianqing, Gu Wenbin, et al. Stress-testing method by PVDF gauge and its application in explosive test of porous material[J]. Explosion and Shock Waves, 2016, 36(5): 655-662.

[37] 刘瑞军, 陈东林, 何卫锋, 等. 基于激光冲击强化的冲击波实验研究[J]. 应用激光, 2010, 30(3): 204-206.

    Liu Ruijun, Chen Donglin, He Weifeng, et al. Experimental study of shock wave based on laser shock processing[J]. Applied Laser, 2010, 30(3): 204-206.

[38] 胡炎. 纳秒/皮秒激光对石英玻璃高精细加工的研究[D]. 北京: 北京工业大学, 2015.

    Hu Yan. Study on nanosecond/picosecond laser high-precision machining of quartz glass[D]. Beijing: Beijing University of Technology, 2015.

[39] Niino H. Surface microstructuring of inclined trench structures of silica glass by laser-induced backside wet etching[J]. Journal of Laser Micro/Nanoengineering, 2008, 3(3): 182-185.

[40] Niino H, Kawaguchi Y, Sato T, et al. Surface microstructuring of silica glass by laser-induced backside wet etching with a DPSS UV laser[J]. Applied Surface Science, 2007, 253(19): 8287-8291.

[41] Niino H, Kawaguchi Y, Sato T, et al. Surface microstructuring by laser-induced backside wet etching[M]. Tsukuba, Japan: SPIE, 2009.

[42] 高勋银. 激光湿式切割蓝宝石过程中工作液体的研制及加工机理研究[D]. 广州: 广东工业大学, 2014.

    Gao Xunyin. study on the development of working solution and processing mechanism of laser wet etching sapphire sub-strate[D]. Guangzhou: Guangdong University of Technology, 2014.

[43] Kawaguchi Y, Sato T, Narazaki A, et al. Rapid prototyping of silica glass microstructures by the LIBWE method: fabrication of deep microtrenches[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182(3): 319-324.

[44] Lin Geng, Tan Dezhi, Luo Fangfang, et al. Fabrication and photocatalytic property of α-Bi2O3 nanoparticles by femto-second laser ablation in liquid[J]. Journal of Alloys and Com-pounds, 2010, 507(2): L43-L46.

[45] Liu Peisheng, Cai Weiping, Zeng Haibo. Fabrication and size-dependent optical properties of FeO nanoparticles in-duced by laser ablation in a liquid medium[J]. The Journal of Physical Chemistry C, 2008, 112(9): 3261-3266.

[46] 何国庆. 激光液相烧蚀制备纳米颗粒的研究[D]. 聊城: 聊城大学, 2014.

    He Guoqing. Preparation of nano particles in laser ablation in liquids[D]. Liaocheng: Liaocheng University, 2014.

[47] Intartaglia R, Bagga K, Scotto M, et al. Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications[J]. Optical Materials Express, 2012, 2(5): 510-518.

[48] Quinto-Su P A, Kuss C, Preiser P R, et al. Red blood cell rheology using single controlled laser-induced cavitation bubbles[J]. Lab on A Chip, 2011, 11(4): 672-678.

[49] Quinto-Su P A, Dijkink R, Prabowo F, et al. Interaction of red blood cells with arrays of laser-induced cavitation bubbles[C]. Proceedings of the 7th International Symposium on Cavitation, 2009.

[50] Park M A, Jang H J, Sirotkin F V, et al. Er: YAG laser pulse for small-dose splashback-free microjet transdermal drug deliv-ery[J]. Optics Letters, 2012, 37(18): 3894-3896.

[51] Jang H J, Yeo S, Yoh J J. Skin pre-ablation and laser assisted microjet injection for deep tissue penetration[J]. Lasers in Surgery and Medicine, 2017, 49(4): 387-394.

[52] Ramachandran H, Dharmadhikari A K, Bambardekar K, et al. Optical-tweezer-induced microbubbles as scavengers of car-bon nanotubes[J]. Nanotechnology, 2010, 21(24): 245102.

[53] Luo Kaiyu, Lu Jinzhong, Zhang Lingfeng, et al. The micro-structural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing[J]. Materials & Design (1980-2015), 2010, 31(5): 2599-2603.

[54] Babu N K, Raman S G S, Murthy C V S, et al. Effect of beam oscillation on fatigue life of Ti-6Al-4V electron beam weld-ments[J]. Materials Science and Engineering: A, 2007, 471(1-2): 113-119.

[55] 聂贵锋, 冯爱新, 任旭东, 等. 激光冲击参数对2024铝合金冲击区域的主应力及其方向的影响[J]. 中国激光, 2012, 39(1): 0103006.

    Nie Guifeng, Feng Aixin, Ren Xudong, et al. Effect of laser shock processing parameters on residual principal stresses and its directions of 2024 aluminum alloy[J]. Chinese Journal of Lasers, 2012, 39(1): 0103006.

[56] 罗新民, 苑春智, 张静文, 等. 激光冲击及其对金属材料组织和性能的影响[J]. 热处理, 2012, 27(1): 17-22.

    Luo Xinmin, Yuan Chunzhi, Zhang Jingwen, et al. Laser shocking and its effects on microstructure and properties of metallic materials[J]. Heat Treatment, 2012, 27(1): 17-22.

[57] Zhao Wenyue, Liu Yuzhuo, Liu Lei, et al. Surface recrystalli-zation of a gamma-TiAl alloy induced by shot peening and subsequent annealing treatments[J]. Applied Surface Science, 2013, 270: 690-696.

[58] 王海将, 刘伟嵬, 余跃, 等. 金属表面污染物的激光清洗研究现状与展望[J]. 内燃机与配件, 2016(8): 75-78.

    Wang Haijiang, Liu Weiwei, Yu Yue, et al. Research status and prospect of laser cleaning of metal surface contamination[J]. Internal Combustion Engine & Parts, 2016(8): 75-78.

[59] Song W, Hong M, Lukiyanchuk B. Method and apparatus for cleaning surfaces: US, US 6777642 B2[P]. 2004.

[60] 齐扬, 周伟强, 陈静, 等. 激光清洗云冈石窟文物表面污染物的试验研究[J]. 安全与环境工程, 2015, 22(2): 32-38.

    Yang Qi, Zhou Weiqiang, Chen Jing, et al. Laser cleaning of contaminants on the surface of Yungang Grottoes[J]. Safety and Environmental Engineering, 2015, 22(2): 32-38.

[61] Weng T S, Tsai C H. Laser-induced backside wet cleaning technique for glass substrates[J]. Applied Physics A, 2014, 116(2): 597-604.

[62] Kim T H, Busnaina A, Park J G, et al. Nanoscale particle re-moval using wet laser shockwave cleaning[J]. ECS Journal of Solid Science and Technology, 2012, 1(2): P70-P77.

曹州权, 谢小柱, 陈蔚芳, 魏昕, 胡伟, 任庆磊. 液体辅助激光加工过程中压力检测及应用研究进展[J]. 光电工程, 2017, 44(4): 381. Zhouquan Cao, Xiaozhu Xie, Weifang Chen, Xin Wei, Wei Hu, Qinglei Ren. Research progress of pressure detection and applications in liquid-assisted laser machining[J]. Opto-Electronic Engineering, 2017, 44(4): 381.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!