光子学报, 2016, 45 (9): 0914003, 网络出版: 2016-10-19   

基于MgO∶PPLN晶体差频产生的宽调谐中红外连续激光光源

Difference Frequency Generation Wildly Tunable Continuous Wave Mid-infrared Radiation Laser Source Based on a MgO∶PPLN Crystal
作者单位
1 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 西安 710119
2 中国科学院大学, 北京 100049
3 上海理工大学 光电信息与计算机工程学院 教育部光学仪器与系统工程研究中心 上海市现代光学系统重点实验室, 上海 200093
摘要
分别以1 083 nm和1 550 nm波段的窄线宽连续光源为泵浦光和信号光, 搭建基于掺MgO周期铌酸锂晶体(MgO∶PPLN)准相位匹配原理的差频非线性效应产生中红外激光实验系统.根据系统温度和信号光波长调谐特性进行实验研究.在泵浦光波长固定条件下改变信号光波长, 实现了窄线宽宽调谐中红外连续闲频激光输出, 波长覆盖范围为3 547.6~3 629.1 nm.当波长为1 082.8 nm的泵浦光和波长为1 549.7 nm的信号光功率分别放大到2.8 W和3.5 W时, 对波长为3 597.0 nm的中红外闲频光输出进行长时间功率扫描监测, 得到最大功率为3.2 mW, 功率抖动引起不稳定度小于±1.6%的高稳定的中红外窄线宽激光输出.该研究结果可为设计和研制多波长窄线宽中红外光源提供参考.
Abstract
The continuous-wave Mid-Infrared Radiation(Mid-IR) was experimentally obtained by difference frequency quasi-phase-matching in a MgO-doped periodically poled LiNbO3 crystal (MgO∶PPLN), which the narrow linewidth light sources with 1 083 nm and 1 550 nm were used as pump light and signal light,respectively. Moreover, the multiple mid-IR wavelengths were realized by adjusting the signal wavelength and using the temperature controlling on a MgO∶PPLN. The wavelength tuning region is around 3 547.6 nm to 3 629.1 nm. A maximum mid-infrared radiation power of 3.2 mW at 3 597.0 nm is generated when the optical power of signal and pump lights are amplified to 3.5 W and 2.8 W respectively. The power jitter of mid-infrared output is less than ±1.6% after along time test recording. This study can be used as a reference for the design and development of narrow line width multi-wavelength continuous-wave infrared light source.
参考文献

[1] PETROV K, CURL R, TITTEL F. Compact laser difference-frequency spectrometer for multicomponent trace gas detection[J]. Applied Physics B, 1998, 66(5): 531-538.

[2] 汪六三, 曹振松, 王欢.宽调谐中红外差频激光及大气水汽浓度探测[J].光学学报, 2011, 31(4): 188-193.

    WANG Liu-san, CAO Zhen-song, WANG Huan, A widely tunable mid-infrared difference frequency generation laser and its detection of atmospheric water[J]. Acta Optica Sinica, 2011, 31(4): 188-193.

[3] 陈东, 张伯昆, 胡燮, 等.基于差频中红外激光的痕量气体高分辨光谱检测研究[J]. 光子学报, 2012, 41(6): 678-683.

    CHEN Dong, ZHANG Bo-kun, HU Xie. Research on the high resolution trace gas detection based on the difference-frequency mid-infrared spectrometer[J]. Acta Photonica Sinica, 2012, 41(6): 678-683.

[4] RICHTER D, WERT B, FRIED A, et al. High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source[J]. Optics Letters, 2009, 34(2): 172-174.

[5] MAHON R, BURRIS H, FERRARO M, et al. A comparative study of 3.6μm and 1.55μm atmospheric transmission[C]. SPIE, 2008, 6951: 69510Q.

[6] LUZHANSKY E, CHOA F, MERRITT S, et al. Mid-IR free-space optical communication with quantum cascade lasers[C]. SPIE, 2015, 9465: 946512.

[7] FRIED A, HENRY B, WERT B, et al. Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies[J]. Applied Physics B, 1998, 67(3): 317-330.

[8] YU Y, ANTHONY J , CLAIRE F. Mid-infrared quantum cascade lasers[J]. Nature Photonics, 2012, 6: 432-439.

[9] FAIST J. Quantum cascade lasers[M]. Oxford University Press, 2013.

[10] 高娟娟, 李夏, 高松, 等.石英光子晶体光纤中高功率中红外超连续谱的产生[J].发光学报, 2015, 36(2):225-230.

    GAO Juan-juan, LI Xia, GAO Song, et al. High power mid-infrared supercontinuum generation in silica photonic crystal fiber[J]. Chinese Journal of Luminesence, 2015, 36(2): 225-230.

[11] MOMOSE T, WAKABAYASHI T , SHIDA T. Tunable-narrow linewidth continuous-wave mid-infrared light generation by difference frequency mixing[J]. Journal of the Optical Society of America B, 1996, 13(8): 1706-1712.

[12] CHANG J, MAO Q, FENG S, et al. Widely tunable mid-IR difference-frequency generation based on fiber lasers[J]. Optics Letters, 2010, 35: 3486-3488.

[13] KRZEMPEK K, SOBON G, ABRAMSKI K. DFG-based mid-IR generation using a compact dual-wavelength all-fiber amplifier for laser spectroscopy applications[J]. Optics Express, 2013, 21: 20023.

[14] 蒋建, 常建华, 冯素娟, 毛庆和, 基于光纤激光器的中红外差频多波长激光产生[J].物理学报, 2010, 59( 11):7892-7898.

    JIANG Jian, CHANG Jian-Hua, FENG Su-Juan,et al. Mid-IR multiwavelength difference frequency generation laser source based on fiber lasers[J]. Acta Physica Sinica, 2010, 59(11):7892-7898.

[15] DENZER W, HANCOCK G, HUTCHINSON A, et al. Mid-infrared generation and spectroscopy with a PPLN ridge waveguide[J]. Applied Physics B, 2007, 86(3): 437-442.

[16] CHU T. Intracavity cw difference frequency generation by mixing three photons and using gaussian laser beams[J]. Journal De Physique, 1985, 46(4): 523-533.

[17] CORNELIA F, MARKUS W. Mid-IR Difference frequency generation[J]. Topics Applied. Physics, 2003, 89: 97-143.

[18] ZONDY J. The effects of focusing in type-I and type-II difference-frequency generations[J].Optics Communications, 1998, 149(s 1-3): 181-206.

[19] GAY O, SACKS Z, GALUN E, et al. Temperature and wavelength dependent refractive index equations for mgo-doped congruent and stoichiometric LiNbO3[J]. Applied Physics B, 2008, 91: 343-348.

[20] JUNDT D. Temperature dependent sellmeier equation for the index of refraction, ne, in congruent lithium niobate[J] .Optics Letters, 1997, 22(20): 1553-1555.

张泽宇, 朱国申, 汪伟, 段弢, 杨松, 郝强, 韩彪, 谢小平, 曾和平. 基于MgO∶PPLN晶体差频产生的宽调谐中红外连续激光光源[J]. 光子学报, 2016, 45(9): 0914003. ZHANG Ze-yu, ZHU Guo-shen, WANG Wei, DUAN Tao, YANG Song, HAO Qiang, HAN Biao, XIE Xiao-ping, ZENG He-ping. Difference Frequency Generation Wildly Tunable Continuous Wave Mid-infrared Radiation Laser Source Based on a MgO∶PPLN Crystal[J]. ACTA PHOTONICA SINICA, 2016, 45(9): 0914003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!