中国激光, 2018, 45 (6): 0606005, 网络出版: 2018-07-05   

不同基片对单量子点单光子荧光发射的调控 下载: 1082次

Modification of Single Photon Fluorescence Emission of Single Quantum Dots with Different Substrates
作者单位
1 南开大学电子信息与光学工程学院现代光学研究所光学信息技术科学教育部重点实验室, 天津 300350
2 天津大学精密仪器与光电子工程学院精密测试技术及仪器国家重点实验室, 天津 300072
引用该论文

林雨, 钟莹, 刘海涛. 不同基片对单量子点单光子荧光发射的调控[J]. 中国激光, 2018, 45(6): 0606005.

Yu Lin, Ying Zhong, Haitao Liu. Modification of Single Photon Fluorescence Emission of Single Quantum Dots with Different Substrates[J]. Chinese Journal of Lasers, 2018, 45(6): 0606005.

参考文献

[1] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937.

    Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937.

[2] Baba K, Nishida K. Single-molecule tracking in living cells using single quantum dot applications[J]. Theranostics, 2012, 2(7): 655-667.

    Baba K, Nishida K. Single-molecule tracking in living cells using single quantum dot applications[J]. Theranostics, 2012, 2(7): 655-667.

[3] 朱小妹, 王晓梅, 冯刚, 等. 量子点偶联RGD用于喉癌血管的靶向活体成像[J]. 中国激光, 2014, 41(5): 0504002.

    朱小妹, 王晓梅, 冯刚, 等. 量子点偶联RGD用于喉癌血管的靶向活体成像[J]. 中国激光, 2014, 41(5): 0504002.

    Zhu X M, Wang X M, Feng G, et al. Quantum dot conjugated RGD for targeted in vivo imaging of laryngocarcinoma vessel[J]. Chinese Journal of Lasers, 2014, 41(5): 0504002.

    Zhu X M, Wang X M, Feng G, et al. Quantum dot conjugated RGD for targeted in vivo imaging of laryngocarcinoma vessel[J]. Chinese Journal of Lasers, 2014, 41(5): 0504002.

[4] Bauch M, Toma K, Toma M, et al. Plasmon-enhanced fluorescence biosensors: a review[J]. Plasmonics, 2014, 9(4): 781-799.

    Bauch M, Toma K, Toma M, et al. Plasmon-enhanced fluorescence biosensors: a review[J]. Plasmonics, 2014, 9(4): 781-799.

[5] Li M, Cushing S K, Wu N Q. Plasmon-enhanced optical sensors: a review[J]. Analyst, 2015, 140(2): 386-406.

    Li M, Cushing S K, Wu N Q. Plasmon-enhanced optical sensors: a review[J]. Analyst, 2015, 140(2): 386-406.

[6] Lidke K A, Rieger B, Jovin T M, et al. Superresolution by localization of quantum dots using blinking statistics[J]. Optics Express, 2005, 13(18): 7052-7062.

    Lidke K A, Rieger B, Jovin T M, et al. Superresolution by localization of quantum dots using blinking statistics[J]. Optics Express, 2005, 13(18): 7052-7062.

[7] Antelman J, Wilking-Chang C, Weiss S, et al. Nanometer distance measurements between multicolor quantum dots[J]. Nano Letters, 2009, 9(5): 2199-2205.

    Antelman J, Wilking-Chang C, Weiss S, et al. Nanometer distance measurements between multicolor quantum dots[J]. Nano Letters, 2009, 9(5): 2199-2205.

[8] Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device[J]. Science, 2000, 290(5500): 2282-2285.

    Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device[J]. Science, 2000, 290(5500): 2282-2285.

[9] Moreau E, Robert I, Gérard J M, et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities[J]. Applied Physics Letters, 2001, 79(18): 2865-2867.

    Moreau E, Robert I, Gérard J M, et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities[J]. Applied Physics Letters, 2001, 79(18): 2865-2867.

[10] Qasim K, Lei W, Li Q. Quantum dots for light emitting diodes[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(5): 3173-3185.

    Qasim K, Lei W, Li Q. Quantum dots for light emitting diodes[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(5): 3173-3185.

[11] 陈雯柏, 马航, 叶继兴, 等. 量子点显示器件研究进展[J]. 激光与光电子学进展, 2017, 54(11): 110003.

    陈雯柏, 马航, 叶继兴, 等. 量子点显示器件研究进展[J]. 激光与光电子学进展, 2017, 54(11): 110003.

    Chen W B, Ma H, Ye J X, et al. Research progress on quantum dot light emitting diodes[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110003.

    Chen W B, Ma H, Ye J X, et al. Research progress on quantum dot light emitting diodes[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110003.

[12] 王红培, 王广龙, 邱鹏, 等. 量子点场效应晶体管单光子探测器的设计与特性分析[J]. 中国激光, 2013, 40(1): 0118001.

    王红培, 王广龙, 邱鹏, 等. 量子点场效应晶体管单光子探测器的设计与特性分析[J]. 中国激光, 2013, 40(1): 0118001.

    Wang H P, Wang G L, Qiu P, et al. Design and characteristics analysis of single photon detector based on quantum-dot field effect transistor[J]. Chinese Journal of Lasers, 2013, 40(1): 0118001.

    Wang H P, Wang G L, Qiu P, et al. Design and characteristics analysis of single photon detector based on quantum-dot field effect transistor[J]. Chinese Journal of Lasers, 2013, 40(1): 0118001.

[13] He H, Qian H F, Dong C Q, et al. Single nonblinking CdTe quantum dots synthesized in aqueous thiopropionic acid[J]. Angewandte Chemie, 2006, 118(45): 7550-7753.

    He H, Qian H F, Dong C Q, et al. Single nonblinking CdTe quantum dots synthesized in aqueous thiopropionic acid[J]. Angewandte Chemie, 2006, 118(45): 7550-7753.

[14] Fomenko V, Nesbitt D J. Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression[J]. Nano Letters, 2008, 8(1): 287-293.

    Fomenko V, Nesbitt D J. Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression[J]. Nano Letters, 2008, 8(1): 287-293.

[15] Qin H Y, Niu Y, Meng R Y, et al. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements[J]. Journal of the American Chemical Society, 2014, 136(1): 179-187.

    Qin H Y, Niu Y, Meng R Y, et al. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements[J]. Journal of the American Chemical Society, 2014, 136(1): 179-187.

[16] Vela J, Htoon H, Chen Y F, et al. Effect of shell thickness and composition on blinking suppression and the blinking mechanism in 'giant' CdSe/CdS nanocrystal quantum dots[J]. Journal of Biophotonics, 2010, 3(10/11): 706-717.

    Vela J, Htoon H, Chen Y F, et al. Effect of shell thickness and composition on blinking suppression and the blinking mechanism in 'giant' CdSe/CdS nanocrystal quantum dots[J]. Journal of Biophotonics, 2010, 3(10/11): 706-717.

[17] 王早, 张国峰, 李斌, 等. 利用N型半导体纳米材料抑制单量子点的荧光闪烁特性[J]. 物理学报, 2015, 64(24): 0247803.

    王早, 张国峰, 李斌, 等. 利用N型半导体纳米材料抑制单量子点的荧光闪烁特性[J]. 物理学报, 2015, 64(24): 0247803.

    Wang Z, Zhang G F, Li B, et al. Suppression of the blinking of single QDs by using an N-type semiconductor nanomaterial[J]. Acta Physica Sinica, 2015, 64(24): 0247803.

    Wang Z, Zhang G F, Li B, et al. Suppression of the blinking of single QDs by using an N-type semiconductor nanomaterial[J]. Acta Physica Sinica, 2015, 64(24): 0247803.

[18] Munechika K, Chen Y, Tillack A F, et al. Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms[J]. Nano Letters, 2010, 10(7): 2598-2603.

    Munechika K, Chen Y, Tillack A F, et al. Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms[J]. Nano Letters, 2010, 10(7): 2598-2603.

[19] Russell K J, Liu T L, Cui S Y, et al. Large spontaneous emission enhancement in plasmonic nanocavities[J]. Nature Photonics, 2012, 42(3): 543-553.

    Russell K J, Liu T L, Cui S Y, et al. Large spontaneous emission enhancement in plasmonic nanocavities[J]. Nature Photonics, 2012, 42(3): 543-553.

[20] Kolchin P, Pholchai N, Mikkelsen M H, et al. High Purcell factor due to coupling of a single emitter to a dielectric slot waveguide[J]. Nano Letters, 2015, 15(1): 464-468.

    Kolchin P, Pholchai N, Mikkelsen M H, et al. High Purcell factor due to coupling of a single emitter to a dielectric slot waveguide[J]. Nano Letters, 2015, 15(1): 464-468.

[21] Ratchford D, Shafiei F, Kim S, et al. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle[J]. Nano Letters, 2011, 11(3): 1049-1054.

    Ratchford D, Shafiei F, Kim S, et al. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle[J]. Nano Letters, 2011, 11(3): 1049-1054.

[22] Dorh N, Sarua A, Ajmal T, et al. Nanoantenna arrays combining enhancement and beam control for fluorescence-based sensing applications[J]. Applied Optics, 2017, 56(29): 8252-8256.

    Dorh N, Sarua A, Ajmal T, et al. Nanoantenna arrays combining enhancement and beam control for fluorescence-based sensing applications[J]. Applied Optics, 2017, 56(29): 8252-8256.

[23] 耿琰, 王河林. 双粒度CdSe/ZnS掺杂量子点薄膜的反射式荧光温度传感器[J]. 中国激光, 2016, 43(5): 0514003.

    耿琰, 王河林. 双粒度CdSe/ZnS掺杂量子点薄膜的反射式荧光温度传感器[J]. 中国激光, 2016, 43(5): 0514003.

    Geng Y, Wang H L. Reflective fluorescence temperature sensor based on dual-granularity CdSe/ZnS doped quantum dots thin films[J]. Chinese Journal of Lasers, 2016, 43(5): 0514003.

    Geng Y, Wang H L. Reflective fluorescence temperature sensor based on dual-granularity CdSe/ZnS doped quantum dots thin films[J]. Chinese Journal of Lasers, 2016, 43(5): 0514003.

[24] Stefani F D, Zhong X H, Knoll W, et al. Memory in quantum-dot photoluminescence blinking[J]. New Journal of Physics, 2005, 7(1): 197.

    Stefani F D, Zhong X H, Knoll W, et al. Memory in quantum-dot photoluminescence blinking[J]. New Journal of Physics, 2005, 7(1): 197.

[25] Jin S Y, Song N H, Lian T Q. Suppressed blinking dynamics of single QDs on ITO[J]. ACS Nano, 2010, 4(3): 1545-1552.

    Jin S Y, Song N H, Lian T Q. Suppressed blinking dynamics of single QDs on ITO[J]. ACS Nano, 2010, 4(3): 1545-1552.

[26] 吴建芳, 张国峰, 陈瑞云, 等. 界面电子转移对量子点荧光闪烁行为的影响[J]. 物理学报, 2014, 63(16): 167302.

    吴建芳, 张国峰, 陈瑞云, 等. 界面电子转移对量子点荧光闪烁行为的影响[J]. 物理学报, 2014, 63(16): 167302.

    Wu J F, Zhang G F, Chen R Y, et al. Influence of interfacial electron transfer on fluorescence blinking of quantum dots[J]. Acta Physica Sinica, 2014, 63(16): 167302.

    Wu J F, Zhang G F, Chen R Y, et al. Influence of interfacial electron transfer on fluorescence blinking of quantum dots[J]. Acta Physica Sinica, 2014, 63(16): 167302.

[27] Jemsson T, Machhadani H, Karlsson K F, et al. Linearly polarized single photon antibunching from a site-controlled InGaN quantum dot[J]. Applied Physics Letters, 2014, 105(8): 081901.

    Jemsson T, Machhadani H, Karlsson K F, et al. Linearly polarized single photon antibunching from a site-controlled InGaN quantum dot[J]. Applied Physics Letters, 2014, 105(8): 081901.

[28] Chi Y Z, Chen G X, Jelezko F, et al. Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film[J]. IEEE Photonics Technology Letters, 2011, 23(6): 374-376.

    Chi Y Z, Chen G X, Jelezko F, et al. Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film[J]. IEEE Photonics Technology Letters, 2011, 23(6): 374-376.

[29] Li J F, Li C Y, Aroca R F. Plasmon-enhanced fluorescence spectroscopy[J]. Chemical Society Reviews, 2017, 46(13): 3962-3979.

    Li J F, Li C Y, Aroca R F. Plasmon-enhanced fluorescence spectroscopy[J]. Chemical Society Reviews, 2017, 46(13): 3962-3979.

[30] Jia H W, Liu H T, Zhong Y. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas[J]. Scientific Reports, 2015, 5: 8456.

    Jia H W, Liu H T, Zhong Y. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas[J]. Scientific Reports, 2015, 5: 8456.

[31] Palik ED. Handbook of optical constants of solids[M]. Orlando: Academic Press, 1985: 294, 565, 760.

    Palik ED. Handbook of optical constants of solids[M]. Orlando: Academic Press, 1985: 294, 565, 760.

[32] Hugonin J P, Lalanne P. Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization[J]. Journal of the Optical Society of America A, 2005, 22(9): 1844-1849.

    Hugonin J P, Lalanne P. Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization[J]. Journal of the Optical Society of America A, 2005, 22(9): 1844-1849.

[33] Liu HT. The calculation is performed with an in-house software, DIF code for modeling light diffraction in nanostructures[M]. Tianjin: Nankai University, 2010.

    Liu HT. The calculation is performed with an in-house software, DIF code for modeling light diffraction in nanostructures[M]. Tianjin: Nankai University, 2010.

[34] Li L F. New formulation of the Fourier modal method for crossed surface-relief gratings[J]. Journal of the Optical Society of America A, 1997, 14(10): 2758-2767.

    Li L F. New formulation of the Fourier modal method for crossed surface-relief gratings[J]. Journal of the Optical Society of America A, 1997, 14(10): 2758-2767.

[35] Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence[J]. Physical Review Letters, 2006, 96(11): 113002.

    Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence[J]. Physical Review Letters, 2006, 96(11): 113002.

[36] Song M, Wu B T, Chen G X, et al. Photoluminescence plasmonic enhancement of single quantum dots coupled to gold microplates[J]. Journal of Physical Chemistry C, 2014, 118(16): 8514-8520.

    Song M, Wu B T, Chen G X, et al. Photoluminescence plasmonic enhancement of single quantum dots coupled to gold microplates[J]. Journal of Physical Chemistry C, 2014, 118(16): 8514-8520.

[37] Shimizu K T, Woo W K, Fisher B R, et al. Surface-enhanced emission from single semiconductor nanocrystals[J]. Physical Review Letters, 2002, 89(11): 117401.

    Shimizu K T, Woo W K, Fisher B R, et al. Surface-enhanced emission from single semiconductor nanocrystals[J]. Physical Review Letters, 2002, 89(11): 117401.

林雨, 钟莹, 刘海涛. 不同基片对单量子点单光子荧光发射的调控[J]. 中国激光, 2018, 45(6): 0606005. Yu Lin, Ying Zhong, Haitao Liu. Modification of Single Photon Fluorescence Emission of Single Quantum Dots with Different Substrates[J]. Chinese Journal of Lasers, 2018, 45(6): 0606005.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!