发光学报, 2018, 39 (12): 1807, 网络出版: 2018-12-25  

(Lu,Y)2SiO5∶Ce3+与SrSO4∶Dy3+材料低温热释光及其测试仪器的研究

Low-temperature Thermoluminescence of (Lu,Y)2SiO5∶Ce3+ and SrSO4∶Dy3+ and Their Measurement Instruments
作者单位
1 中山大学 物理学院, 广州 510275
2 中国科学院 上海硅酸盐所, 上海 201800
3 广州瑞迪爱生科技有限公司, 广州 510653
摘要
为了分析材料在低温下的陷阱能级, 获得更多有关缺陷结构的信息, 研制了一套由STM32微控制器为核心的低温热释光发光谱测量系统。 设计了低温样品室,采用液氮冷却样品; STM32通过控制加热电流, 实现样品以恒定速率升温, 从而获得低温热释光发光曲线或三维热释光谱。温度测量范围为85~400 K, 升温速率范围为0.1~10 K/s。设计了由STM32控制X射线及紫外光源的驱动电路, 用于样品的激发。采用高灵敏度CCD实现对三维热释光谱的测量, 采用单光子计数器获取二维热释光发光曲线。利用该系统测试了(Lu,Y)2SiO5∶Ce3+(LYSO∶Ce3+)单晶闪烁体与SrSO4∶Dy3+粉末样品的热释光谱及辐射发光光谱。观察到LYSO∶Ce3+在108, 200, 380 K左右的热释光峰, 发光波长位于390~450 nm之间, 是明显的宽带峰。在低温下由于基质的自陷激子(STE)发射所形成的发射峰在166 K时发生猝灭。在309 K时, Ce3+发射峰展宽为单一发射峰; SrSO4∶Dy3+发光峰温度为178, 385 K, 发光波长由Dy3+离子的能级跃迁决定, 在480, 575, 660, 750 nm处呈现窄带发光峰。结果表明, 系统人机交互界面友好, 实验数据可靠, 智能化程度高, 操作简单。
Abstract
To analyze the trap level at low temperature and obtain more information about the defect structure of materials, a low-temperature thermoluminescence(TL) spectrum measurement system based STM32 micro-controller was developed. Low-temperature sample chamber was designed and the samples were cooled by liquid nitrogen. The heating current was controlled by STM32 so that TL glow curves or three-dimensional(3D) TL spectra were obtained at a constant heating rate. The system has a high-precision temperature range of 85-400 K and the heating rate ranges from 0.1-10 K/s. The drive circuit of X-ray and ultraviolet light controlled by STM32 are designed for sample excitation. A CCD and a PMT are installed in the system to obtain two-dimensional(2D) TL glow curves and 3D TL spectrum respectively. In this paper, the system is used to test the TL and radioluminescence(RL) of (Lu,Y)2SiO5∶Ce3+ (LYSO∶Ce3+) scintillator and SrSO4∶Dy3+. The luminescence around 108, 200, 380 K is observed in LYSO∶Ce3+. The emission band is between 390 and 450 nm, which is a clear broad-band spectra. The emission peak due to the self-trapped excitons(STE) from host at low-temperature quenches above 166 K. The emission peaks of Ce3+ broaden into a single peak at 309 K, the emission peaks of SrSO4∶Dy3+are at 178, 385 K and the wavelength are 480, 575, 660, 750 nm due to the energy transitions of Dy3+, they are narrow-band spectra. The system can provide some merits, such as friendly interface, credible experimental data, higher intelligentization and simple operations.
参考文献

[1] PROKIC M. Individual monitoring based on magnesium borate [J]. Radiat. Protect. Dosimet., 2007,125(1-4): 247-250.

[2] JIANG L H, ZHANG Y L, LI C Y, et al.. Thermoluminescence characteristics of rare-earth-doped LiCaBO3 phosphor [J]. J. Lumin., 2008, 128(12):1904-1908.

[3] GAI M Q, CHEN Z Y, FAN Y W, et al.. Synthesis and luminescence in LiMgPO4∶Tb,Sm,B phosphors with possible applications in real-time dosimetry [J]. J. Rare Earths, 2013, 31( 6):551-554.

[4] SOUZA L F, SILVA A M B, ANTONIO P L, et al.. Dosimetric properties of MgB4O7∶Dy, Li and MgB4O7∶Ce, Li for optically stimulated luminescence applications [J]. Radiat. Meas., 2017, 106:196-199.

[5] MCKEEVER S W W, BUBE R H. Thermoluminescence of Solids [M]. England: Cambridge University Press, 1985.

[6] LIU S P, MARES J A, BABIN V, et al.. Effect of reducing Lu3+ content on the fabrication and scintillation properties of non-stoichiometric Lu3-xAl5O12∶Ce ceramics [J]. Opt. Mater., 2017, 63:179-184.

[7] 刘波, 施朝淑, 周东方, 等. 掺Gd3+,Y3+对PbWO4低温热释光的影响 [J]. 物理学报, 2001, 50(8):1627-1630.

    LIU B, SHI C S, ZHOU D F, et al.. Influence of Gd3+ and Y3+ doping on low temperature thermoluminescence of PbWO4 [J]. Acta Phys. Sinica, 2001, 50(8):1627-1630. (in Chinese)

[8] BOS A J, DORENBOS P, BESSIRE A, et al.. Study of TL glow curves of YPO4 double doped with lanthanide ions [J]. Radiat. Meas., 2011, 46(12):1410-1416.

[9] DORENBOS P. Determining binding energies of valence-band electrons in insulators and semiconductors via lanthanide spectroscopy [J]. Phys. Rev. B, 2013, 87(3):87-92.

[10] HU C, FENG X Q, LI J, et al.. Role of Y admixture in (Lu1-xYx)3Al5O12∶Pr ceramic scintillators free of host luminescence [J]. Phys. Rev.: Appl., 2016, 6(6):064026.

[11] MAO R H, ZHANG L Y, ZHU R Y. Quality of a 28 cm long LYSO crystal and progress on optical and scintillation properties [J]. Trans. Nucl. Sci., 2012, 59(5):2224-2228.

[12] 唐强, 张纯祥. 热释光和光释光发光谱的测量 [J]. 发光学报, 2006, 27(3):308-312.

    TANG Q, ZHANG C X. Measurement of thermoluminescence spectra and optically stimulated luminescence spectra [J]. Chin. J. Lumin., 2006, 27(3):308-312. (in Chinese)

[13] SZUPRYCZYNSKI P, MELCHER C L, KOSCHAN M A, et al.. Thermoluminescence and scintillation properties of rare earth oxyorthosilicate scintillators [J]. IEEE Trans. Nucl. Sci., 2004, 51(3):1103-1110.

[14] FENG H, VITEZSLAV J, MIHOKOVA E, et al.. Temperature dependence of luminescence characteristics of Lu2(1-x)-Y2xSiO5∶Ce3+ scintillator grown by the Czochralski method [J]. J. Appl. Phys., 2010, 108:033519.

[15] DORENBOS P, VAN EIJK C W E, BOS A J J, et al.. After glow and thermoluminescence properties of Lu2SiO5∶Ce scintillation crystals [J]. J. Phys.: Condens. Matter, 1994, 6(22):4167-4180

[16] 唐强. 掺稀土Eu、Tm、Dy和Mn、P的碱土硫酸盐磷光体的热释光和光释光 [D]. 广州:中山大学, 2004.

    TANG Q. Thermoluminescence and Optical Stimulated Luminescence of Eu,Tm,Dy and Mn,P Doped Alkaline-earth Sulfate [D]. Guangzhou: Sun Yat-sen University, 2004. (in Chinese)

[17] ZORENKO Y, ZORENKO T, VOZNYAK T, et al.. Intrinsic luminescence of Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates [J]. J. Lumin., 2013, 137(9):204-207.

唐桦明, 唐强, 毛日华, 谢建才. (Lu,Y)2SiO5∶Ce3+与SrSO4∶Dy3+材料低温热释光及其测试仪器的研究[J]. 发光学报, 2018, 39(12): 1807. TANG Hua-ming, TANG Qiang, MAO Ri-hua, XIE Jian-cai. Low-temperature Thermoluminescence of (Lu,Y)2SiO5∶Ce3+ and SrSO4∶Dy3+ and Their Measurement Instruments[J]. Chinese Journal of Luminescence, 2018, 39(12): 1807.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!