中国激光, 2020, 47 (5): 0500007, 网络出版: 2020-05-12  

大科学装置的高精度定时同步技术 下载: 1893次特邀综述

High-Precision Timing Synchronization Techniques in Large-Scale Scientific Facilities
辛明 *
作者单位
天津大学电气自动化与信息工程学院, 天津 300072
引用该论文

辛明. 大科学装置的高精度定时同步技术[J]. 中国激光, 2020, 47(5): 0500007.

Ming Xin. High-Precision Timing Synchronization Techniques in Large-Scale Scientific Facilities[J]. Chinese Journal of Lasers, 2020, 47(5): 0500007.

参考文献

[1] Haus H A. Mode-locking of lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1173-1185.

[2] Jones D J. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-639.

[3] Holzwarth R, Udem T, Hänsch T W, et al. Optical frequency synthesizer for precision spectroscopy[J]. Physical Review Letters, 2000, 85(11): 2264-2267.

[4] AltarelliM, BrinkmannR, CherguiM, et al. XFEL: the European X-ray free-electron laser[R]. Notkestrasse,Hamburg: DESY, 2006.

[5] Allaria E, Appio R, Badano L, et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nature Photonics, 2012, 6: 699-704.

[6] Milne C J, Schietinger T, Aiba M, et al. SwissFEL: the swiss X-ray free electron laser[J]. Applied Sciences, 2017, 7(7): 720.

[7] Emma P, Akre R, Arthur J, et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4(9): 641-647.

[8] StohrJ. Linac coherent light source II (LCLS-II) conceptual design report[R]. Washington, D.C.: USDOE Office of Science, 2011.

[9] Huang Z R, Lindau I. SACLA hard-X-ray compact FEL[J]. Nature Photonics, 2012, 6(8): 505-506.

[10] Zhao Z T, Wang D, Gu Q, et al. SXFEL: a soft X-ray free electron laser in China[J]. Synchrotron Radiation News, 2017, 30(6): 29-33.

[11] 赵振堂, 王东, 殷立新, 等. 上海软X射线自由电子激光装置[J]. 中国激光, 2019, 46(1): 0100004.

    Zhao Z T, Wang D, Yin L X, et al. Shanghai soft X-ray free-electron laser facility[J]. Chinese Journal of Lasers, 2019, 46(1): 0100004.

[12] Prat E, Reiche S. Simple method to generate terawatt-attosecond X-ray free-electron-laser pulses[J]. Physical Review Letters, 2015, 114(24): 244801.

[13] Kupitz C, Basu S, Grotjohann I, et al. Serial time-resolved crystallography of photosystem Ⅱ using a femtosecond X-ray laser[J]. Nature, 2014, 513(7517): 261-265.

[14] Öström H, Öberg H, Xin H, et al. Probing the transition state region in catalytic CO oxidation on Ru[J]. Science, 2015, 347(6225): 978-982.

[15] Calegari F, Ayuso D, Trabattoni A, et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses[J]. Science, 2014, 346(6207): 336-339.

[16] Son S K, Young L, Santra R. Impact of hollow-atom formation on coherent X-ray scattering at high intensity[J]. Physical Review A, 2011, 83(3): 033402.

[17] Hau-Riege S P. Photoelectron dynamics in X-ray free-electron-laser diffractive imaging of biological samples[J]. Physical Review Letters, 2012, 108(23): 238101.

[18] 冷雨欣. 上海超强超短激光实验装置[J]. 中国激光, 2019, 46(1): 0100001.

    Leng Y X. Shanghai superintense ultrafast laser facility[J]. Chinese Journal of Lasers, 2019, 46(1): 0100001.

[19] Mourou G, Tajima T. More intense, shorter pulses[J]. Science, 2011, 331(6013): 41-42.

[20] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 2016, 12(5): 435-448.

[21] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nature Photonics, 2013, 7(4): 258-261.

[22] Castelvecchi D. Black hole pictured for first time: in spectacular detail[J]. Nature, 2019, 568(7752): 284-285.

[23] Middelberg E, Bach U. High resolution radio astronomy using very long baseline interferometry[J]. Reports on Progress in Physics, 2008, 71(6): 066901.

[24] Dewdney P E, Hall P J, Schilizzi R T, et al. The square kilometre array[J]. Proceedings of the IEEE, 2009, 97(8): 1482-1496.

[25] Dravins D, Lagadec T, Nuñez P D. Optical aperture synthesis with electronically connected telescopes[J]. Nature Communications, 2015, 6: 6852.

[26] He Y B. Baldwin K G H, Orr B J, et al. Long-distance telecom-fiber transfer of a radio-frequency reference for radio astronomy[J]. Optica, 2018, 5(2): 138-146.

[27] Haus H A, Mecozzi A. Noise of mode-locked lasers[J]. IEEE Journal of Quantum Electronics, 1993, 29(3): 983-996.

[28] Scott R P, Langrock C, Kolner B H. High-dynamic-range laser amplitude and phase noise measurement techniques[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 641-655.

[29] Quinlan F, Fortier T M, Jiang H, et al. Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains[J]. Nature Photonics, 2013, 7(4): 290-293.

[30] Sun W L, Quinlan F, Fortier T, et al. Broadband noise limit in the photodetection of ultralow jitter optical pulses[J]. Physical Review Letters, 2014, 113(20): 203901.

[31] Jiang L A, Wong S T, Grein M E, et al. Measuring timing jitter with optical cross correlations[J]. IEEE Journal of Quantum Electronics, 2002, 38(8): 1047-1052.

[32] Schibli T R, Kim J, Kuzucu O, et al. Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation[J]. Optics Letters, 2003, 28(11): 947-949.

[33] Kim J, Chen J, Cox J, et al. Attosecond-resolution timing jitter characterization of free-running mode-locked lasers[J]. Optics Letters, 2007, 32(24): 3519-3521.

[34] Kärtner FX, WongF, Kim J. Compact background-free balanced cross-correlators: US0045974[P].2010-02-05[2020-01-01]. https:∥patentscope.wipo.int/search/en/detail.jsf?docId=WO2008153594.

[35] Xin M, Şafak K, Kärtner F X. Ultra-precise timing and synchronization for large-scale scientific instruments[J]. Optica, 2018, 5(12): 1564-1578.

[36] Diels JC, RudolphW. Ultrashort laser pulse phenomena[M]. 2nd ed. Cambridge: Academic Press, 2006.

[37] Cox J A, Nejadmalayeri A H, Kim J, et al. Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers[J]. Optics Letters, 2010, 35(20): 3522-3524.

[38] Kim T K, Song Y J, Jung K, et al. Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers[J]. Optics Letters, 2011, 36(22): 4443-4445.

[39] Song Y J, Kim C, Jung K, et al. Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime[J]. Optics Express, 2011, 19(15): 14518-14525.

[40] Benedick A J, Fujimoto J G, Kärtner F X. Optical flywheels with attosecond jitter[J]. Nature Photonics, 2012, 6(2): 97-100.

[41] Şafak K, Xin M, Zhang Q, et al. Jitter analysis of timing-distribution and remote-laser synchronization systems[J]. Optics Express, 2016, 24(19): 21752-21766.

[42] Li H, Chen L J. Cheng H P H, et al. Remote two-color optical-to-optical synchronization between two passively mode-locked lasers[J]. Optics Letters, 2014, 39(18): 5325-5328.

[43] Zhou G J, Xin M, Kaertner F X, et al. Timing jitter of Raman solitons[J]. Optics Letters, 2015, 40(21): 5105-5108.

[44] HuaY, Zhou GJ, LiuW, et al. Tightly synchronized two-color femtosecond source based on low-noise SPM-enabled spectral selection[C]∥Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, California. Washington, D.C.: OSA, 2018: JTh2A. 162.

[45] Nejadmalayeri A H. Wong F N C, Roberts T D, et al. Guided wave optics in periodically poled KTP: quadratic nonlinearity and prospects for attosecond jitter characterization[J]. Optics Letters, 2009, 34(16): 2522-2524.

[46] Callahan P T, Safak K, Battle P, et al. Fiber-coupled balanced optical cross-correlator using PPKTP waveguides[J]. Optics Express, 2014, 22(8): 9749-9758.

[47] JonesB, HawthorneT, BattleP, et al. Development of a waveguide-based optical cross-correlator for attosecond timing synchronization[C]∥International Conference on Ultrafast Optics(UFO XI). [S.l.: s.n.], 2017.

[48] Giovannetti V, Lloyd S. MacCone L. Quantum-enhanced positioning and clock synchronization[J]. Nature, 2001, 412(6845): 417-419.

[49] Chen Y F, Jiang J, Jones D J. Remote distribution of a mode-locked pulse train with sub 40-as jitter[J]. Optics Express, 2006, 14(25): 12134-12144.

[50] Hou D, Lee C C, Yang Z, et al. Timing jitter characterization of mode-locked lasers with <1 zs/ Hz resolution using a simple optical heterodyne technique[J]. Optics Letters, 2015, 40(13): 2985-2988.

[51] Kwon D, Jeon C G, Shin J, et al. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs[J]. Scientific Reports, 2017, 7: 40917.

[52] Kim J, Kärtner F X, Ludwig F. Balanced optical-microwave phase detectors for optoelectronic phase-locked loops[J]. Optics Letters, 2006, 31(24): 3659-3661.

[53] Kim J, Cox J A, Chen J, et al. Drift-free femtosecond timing synchronization of remote optical and microwave sources[J]. Nature Photonics, 2008, 2(12): 733-736.

[54] Peng M Y, Kalaydzhyan A, Kärtner F X. Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization[J]. Optics Express, 2014, 22(22): 27102-27111.

[55] Xin M, Şafak K, Peng M Y, et al. Attosecond precision multi-kilometer laser-microwave network[J]. Light: Science & Applications, 2017, 6(1): e16187.

[56] ŞafakK, Cheng H P H, Dai A, et al. Balanced optical-microwave phase detector for 800-nm pulsed lasers with sub-femtosecond resolution[C]∥39th Free Electron Laser Conference (FEL). [S.l.]: JACoW Publishing, 2019.

[57] Jung K, Kim J. Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers[J]. Optics Letters, 2012, 37(14): 2958-2960.

[58] Yang H, Han B, Shin J, et al. 10-fs-level synchronization of photocathode laser with RF-oscillator for ultrafast electron and X-ray sources[J]. Scientific Reports, 2017, 7: 39966.

[59] Endo M, Shoji T D, Schibli T R. High-sensitivity optical to microwave comparison with dual-output Mach-Zehnder modulators[J]. Scientific Reports, 2018, 8: 4388.

[60] Jeon C G, Na Y J, Lee B W, et al. Simple-structured, subfemtosecond-resolution optical-microwave phase detector[J]. Optics Letters, 2018, 43(16): 3997-4000.

[61] Lessing M, Margolis H S. Brown C T A, et al. Suppression of amplitude-to-phase noise conversion in balanced optical-microwave phase detectors[J]. Optics Express, 2013, 21(22): 27057-27062.

[62] Baynes F, Quinlan F, Fortier T, et al. Attosecond timing in optical-to-electrical conversion[J]. Optica, 2014, 2(2): 141-146.

[63] Bouchand R, Nicolodi D, Xie X P, et al. Accurate control of optoelectronic amplitude to phase noise conversion in photodetection of ultra-fast optical pulses[J]. Optics Express, 2017, 25(11): 12268-12281.

[64] Ding Y, Decker F J, Emma P, et al. Femtosecond X-ray pulse characterization in free-electron lasers using a cross-correlation technique[J]. Physical Review Letters, 2012, 109(25): 254802.

[65] Cavalieri AL, Fritz DM, Lee SH, et al. Clocking femtosecond X rays[J]. Physical Review Letters, 94( 11): 114801.

[66] Tavella F, Stojanovic N, Geloni G, et al. Few-femtosecond timing at fourth-generation X-ray light sources[J]. Nature Photonics, 2011, 5(3): 162-165.

[67] Gahl C, Azima A, Beye M, et al. A femtosecond X-ray/optical cross-correlator[J]. Nature Photonics, 2008, 2(3): 165-169.

[68] Harmand M, Coffee R, Bionta M R, et al. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers[J]. Nature Photonics, 2013, 7(3): 215-218.

[69] Grguraš I, Maier A R, Behrens C, et al. Ultrafast X-ray pulse characterization at free-electron lasers[J]. Nature Photonics, 2012, 6(12): 852-857.

[70] Schulz S, Grguraš I, Behrens C, et al. Femtosecond all-optical synchronization of an X-ray free-electron laser[J]. Nature Communications, 2015, 6: 5938.

[71] 方少波, 魏志义. 亚周期超快光场相干合成技术[J]. 光学学报, 2019, 39(1): 0126006.

    Fang S B, Wei Z Y. Sub-optical-cycle coherent waveform synthesis[J]. Acta Optica Sinica, 2019, 39(1): 0126006.

[72] 葛爱晨, 刘博文, 陈伟, 等. 父脉冲参数对飞秒脉冲相干合成质量的影响[J]. 中国激光, 2019, 46(5): 0508028.

    Ge A C, Liu B W, Chen W, et al. Effects of parent pulse parameters on quality of femtosecond pulse coherent synthesis[J]. Chinese Journal of Lasers, 2019, 46(5): 0505028.

[73] Cinquegrana P, Cleva S, Demidovich A, et al. Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser[J]. Physical Review Special Topics-Accelerators and Beams, 2014, 17(4): 040702.

[74] Csatari Divall M, Mutter P, Divall E J, et al. Femtosecond resolution timing jitter correction on a TW scale Ti∶sapphire laser system for FEL pump-probe experiments[J]. Optics Express, 2015, 23(23): 29929-29939.

[75] Casanova A. D'Acremont Q, Santarelli G, et al. Ultrafast amplifier additive timing jitter characterization and control[J]. Optics Letters, 2016, 41(5): 898-900.

[76] Pergament M, Palmer G, Kellert M, et al. Versatile optical laser system for experiments at the European X-ray free-electron laser facility[J]. Optics Express, 2016, 24(26): 29349-29359.

[77] ValenteS, Calendron AL, MeierJ, et al. Timing stabilization of solid-state, Yb-based laser system[C]∥Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, California. Washington, D.C.: OSA, 2018: JTh2A. 140.

[78] Kang J, Shin J, Kim C, et al. Few-femtosecond-resolution characterization and suppression of excess timing jitter and drift in indoor atmospheric frequency comb transfer[J]. Optics Express, 2014, 22(21): 26023-26031.

[79] Sun F Y, Hou D, Zhang D N, et al. Femtosecond-level timing fluctuation suppression in atmospheric frequency transfer with passive phase conjunction correction[J]. Optics Express, 2017, 25(18): 21312-21320.

[80] Giorgetta F R, Swann W C, Sinclair L C, et al. Optical two-way time and frequency transfer over free space[J]. Nature Photonics, 2013, 7(6): 434-438.

[81] Lee J, Kim Y J, Lee K, et al. Time-of-flight measurement with femtosecond light pulses[J]. Nature Photonics, 2010, 4(10): 716-720.

[82] Deschênes J D, Sinclair L C, Giorgetta F R, et al. Synchronization of distant optical clocks at the femtosecond level[J]. Physical Review X, 2016, 6(2): 021016.

[83] Bergeron H, Sinclair L C, Swann W C, et al. Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path[J]. Optica, 2016, 3(4): 441-447.

[84] Sinclair L C, Bergeron H, Swann W C, et al. Comparing optical oscillators across the air to milliradians in phase and 10 -17 in frequency[J]. Physical Review Letters, 2018, 120(5): 050801.

[85] Coddington I, Swann W C, Lorini L, et al. Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter[J]. Nature Photonics, 2007, 1(5): 283-287.

[86] Foreman S M. Ludlow A D, de Miranda M H G, et al. Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10 -17[J]. Physical Review Letters, 2007, 99(15): 153601.

[87] Lopez O, Amy-Klein A, Lours M, et al. High-resolution microwave frequency dissemination on an 86-km urban optical link[J]. Applied Physics B, 2010, 98(4): 723-727.

[88] Predehl K, Grosche G. Raupach S M F, et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 2012, 336(6080): 441-444.

[89] Wilcox R, Byrd J M, Doolittle L, et al. Stable transmission of radio frequency signals on fiber links using interferometric delay sensing[J]. Optics Letters, 2009, 34(20): 3050-3052.

[90] Glownia J M, Cryan J, Andreasson J, et al. Time-resolved pump-probe experiments at the LCLS[J]. Optics Express, 2010, 18(17): 17620-17630.

[91] Kim J, Chen J, Zhang Z, et al. Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator[J]. Optics Letters, 2007, 32(9): 1044-1046.

[92] Peng M Y, Callahan P T, Nejadmalayeri A H, et al. Long-term stable, sub-femtosecond timing distribution via a 12-km polarization-maintaining fiber link: approaching 10 -21 link stability[J]. Optics Express, 2013, 21(17): 19982-19989.

[93] ŞafakK, Cheng H P H, Dai A N, et al. Single-mode fiber based pulsed-optical timing link with few-femtosecond precision in SwissFEL[C]∥Conference on Lasers and Electro-Optics, May 5-10, 2019, San Jose, California. Washington, D.C.: OSA, 2019: JTh2A. 100.

[94] Şafak K, Xin M, Callahan P T, et al. All fiber-coupled, long-term stable timing distribution for free-electron lasers with few-femtosecond jitter[J]. Structural Dynamics, 2015, 2(4): 041715.

[95] Xin M, Şafak K, Peng M Y, et al. Sub-femtosecond precision timing synchronization systems[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 907: 169-181.

[96] Gordon J P, Haus H A. Random walk of coherently amplified solitons in optical fiber transmission[J]. Optics Letters, 1986, 11(10): 665-667.

[97] Xin M, Şafak K, Peng M Y, et al. One-femtosecond, long-term stable remote laser synchronization over a 35-km fiber link[J]. Optics Express, 2014, 22(12): 14904-14912.

[98] Jung K, Shin J, Kang J, et al. Frequency comb-based microwave transfer over fiber with 7×10 -19 instability using fiber-loop optical-microwave phase detectors[J]. Optics Letters, 2014, 39(6): 1577-1580.

[99] Xin M, Safak K, Peng M Y, et al. Breaking the femtosecond barrier in multi-kilometer timing synchronization systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(3): 97-108.

[100] Şafak K, Xin M, Peng M Y, et al. Synchronous multi-color laser network with daily sub-femtosecond timing drift[J]. Scientific Reports, 2018, 8: 11948.

[101] Wang WT, KalaydzhyanA, ŞafakK, et al. High precision synchronization of a large-scale microwave network over stabilized fiber links[C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California. Washington, D.C.: OSA, 2016: SM4H. 5.

[102] KalaydzhyanA, Peng MY, XinM, et al. Optical-to-microwave synchronization with sub-femtosecond daily drift[C]∥2016 European Frequency and Time Forum (EFTF), April 4-7, 2016, York, United Kingdom. New York: IEEE, 2016: 7477846.

[103] Kim H, Qin P, Song Y J, et al. Sub-20-attosecond timing jitter mode-locked fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 260-267.

[104] Carter S J, Drummond P D, Reid M D, et al. Squeezing of quantum solitons[J]. Physical Review Letters, 1987, 58(18): 1841-1844.

[105] Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physics Review Letters, 2016, 116(6): 061102.

[106] Amaro-Seoane P, Aoudia S, Babak S, et al. Low-frequency gravitational-wave science with eLISA/NGO[J]. Classical and Quantum Gravity, 2012, 29(12): 124016.

辛明. 大科学装置的高精度定时同步技术[J]. 中国激光, 2020, 47(5): 0500007. Ming Xin. High-Precision Timing Synchronization Techniques in Large-Scale Scientific Facilities[J]. Chinese Journal of Lasers, 2020, 47(5): 0500007.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!