光学学报, 2016, 36 (8): 0828002, 网络出版: 2016-08-18   

采用字典递归更新的目标检测稀疏算法及GPU实现

Target Detection Sparse Algorithm by Recursive Dictionary Updating and GPU Implementation
作者单位
哈尔滨工程大学信息与通信工程学院, 黑龙江 哈尔滨 150001
摘要
稀疏表示是一种有潜力的图像信息表示方法,已应用于图像目标检测。正交匹配追踪算法(OMP)求解稀疏系数过程计算复杂,不能满足快速处理的要求,因此引入Kalman滤波器的递归思想,提出了一种计算稀疏系数的快速OMP(FastOMP)算法。利用Hermitian引理,从上一时刻的状态更新当前信息,避免了高维矩阵数据的重复计算。为提高算法的执行效率,提出了基于GPU/CUDA(图形处理器/统一计算设备架构)的并行计算方法,充分利用GPU的并行计算能力,提高了FastOMP算法的计算速度。实验结果表明,与传统OMP算法相比,FastOMP算法可大幅度缩短计算时间并提高检测精度。
Abstract
Sparse representation is a potential image representation method, which has been applied to target detection for images. The process to calculate sparse coefficients is complex when the orthogonal matching pursuit (OMP) algorithm is used, which cannot satisfy the requirement of rapid processing. An idea of recursive Kalman filter is introduced, and a fast OMP (FastOMP) algorithm is proposed to calculate the sparse coefficient. The Hermitian lemma is used to update the current information from the last status. The FastOMP algorithm can avoid repeated calculation of higher-dimension matrix data. In order to further improve the efficiency of the algorithm, the parallel computation method is proposed based on GPU/CUDA (graphics processing unit/compute unified device architecture). The parallel computation capacity of GPU is utilized to accelerate the FastOMP algorithm. The experimental results show that the FastOMP algorithm saves the processing time notably and improves the detection accuracy compared to the traditional OMP algorithm.
参考文献

[1] 张兵, 高连如. 高光谱图像分类与目标探测[M]. 北京: 科学出版社, 2011: 78-149.

    Zhang Bing, Gao Lianru. Hyperspectral image classification and target detection[M]. Beijing: Science Press, 2011: 78-149.

[2] 王立国, 赵春晖. 高光谱图像处理技术[M]. 北京: 国防工业出版社, 2013: 101-127.

    Wang Liguo, Zhao Chunhui. Processing techniques of hyperspectral imagery[M]. Beijing: National Defense Industry Press, 2013: 101-127.

[3] 王晓飞, 阎秋静, 张钧萍, 等. 基于相关向量机的高光谱图像超分辨率算法[J]. 中国激光, 2014, 41(s1): s114001.

    Wang Xiaofei, Yan Qiujing, Zhang Junping, et al. Super-resolution reconstruction algorithm based on relevance vector machine for hyperspectral image[J]. Chinese J Lasers, 2014, 41(s1): s114001.

[4] 王晓飞, 阎秋静. 基于集成学习的高光谱图像一类分类算法[J]. 光学学报, 2014, 34(s2): s211002.

    Wang Xiaofei, Yan Qiujing. An ensemble learning algorithm for one-class classification of hyperspectral[J]. Acta Optica Sinica, 2014, 34(s2): s211002.

[5] 赵春晖, 尤伟, 齐滨, 等. 采用多项式递归核的高光谱遥感异常实时检测算法[J]. 光学学报, 2016, 36(2): 0228002.

    Zhao Chunhui, You Wei, Qi Bin, et al. Real-time anomaly detection algorithm for hyperspectral remote sensing by using recursive polynomial kernel function[J]. Acta Optica Sinica, 2016, 36(2): 0228002.

[6] Reed I, Tufts D, Yu X, et al. Fourier analysis and signal processing by use of the Mobius inversion formula[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(10): 458-470.

[7] 吴一全, 周杨, 龙云淋. 基于自适应参数支持向量机的高光谱遥感图像小目标检测[J]. 光学学报, 2015, 35(9): 0928001.

    Wu Yiquan, Zhou Yang, Long Yunlin. Small target detection in hyperspectral remote sensing image based on adaptive parameter SVM[J]. Acta Optica Sinica, 2015, 35(9): 0928001.

[8] Sun W W, Liu C, Li J L, et al. Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery[J]. Journal of Applied Remote Sensing, 2014, 8(1): 083641.

[9] Zhao C H, Wang Y L, Qi B, et al. Global and local real-time anomaly detectors for hyperspectral remote sensing imagery[J]. Remote Sensing, 2015, 7(4): 3966-3985.

[10] Chen Y, Nasrabadi N M, Tran T D. Hyperspectral image classification via kernel sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 217-231.

[11] Chen Y, Nasrabadi N M, Tran T D. Simultaneous joint sparsity model for target detection in hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 676-680.

[12] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.

[13] Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121.

[14] Nascimento J, Bioucas-Dias J, Rodriguez A, et al. Parallel hyperspectral unmixing on GPUs[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3): 666-670.

[15] Paz A, Plaza A. GPU implementation of target and anomaly detection algorithms for remotely sensed hyperspectral image analysis[C]. SPIE, 2010, 7810: 78100R.

[16] Ren H, Chang C I. Automatic spectral target recognition in hyperspectral imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1232-1249.

[17] Paz A, Plaza A, Blzquez S. Parallel implementation of target and anomaly detection algorithms for hyperspectral imagery[C]. IEEE International Geoscience and Remote Sensing Symposium, Boston, 2008, 2: 589-592.

赵春晖, 姚淅峰, 张丽丽. 采用字典递归更新的目标检测稀疏算法及GPU实现[J]. 光学学报, 2016, 36(8): 0828002. Zhao Chunhui, Yao Xifeng, Zhang Lili. Target Detection Sparse Algorithm by Recursive Dictionary Updating and GPU Implementation[J]. Acta Optica Sinica, 2016, 36(8): 0828002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!