中国激光, 2013, 40 (s1): s105003, 网络出版: 2013-12-24  

全固态微结构弯曲不敏感型光纤研究

Analysis of All-Solid Microstructured Bend-Insensitive Optical Fiber
作者单位
1 江苏大学机械工程学院, 江苏 镇江 212013
2 宁波大学理学院, 浙江 宁波 315211
3 东南大学机械工程学院, 江苏 南京 211189
摘要
提出一种新型弯曲不敏感光纤:在阶跃光纤的包层中引入微结构,排布低折射率介质柱以降低弯曲损耗,通过在纤芯外侧设置低折射率环形区以去除高阶模,通过保持环形区和纤芯的折射率差以保证光纤的低连接损耗。采用有限元法分析了光纤的基模弯曲损耗和高阶模的束缚损耗。采用光束传播法分析了微结构光纤与普通单模光纤的连接损耗。计算结果表明:这种新型光纤的弯曲损耗不仅满足G.657 A1标准的要求,且与标准单模光纤的连接损耗小于0.08 dB。
Abstract
A novel bend-insensitive optical fiber is proposed. Low-index rods are included in the cladding to reduce the bending loss, and low refractive index ring surrounding the core is used to remove the higher-order mode. Index-contrast between the core and the low-index ring is conserved to ensure low splicing loss in standard single-mode optical fiber. The bending loss of the fundamental mode and the confinement loss of the higher-order mode are investigated by the finite-element method. The splicing losses between the bend-insensitive optical fiber and the single-mode optical fiber are investigated by the beam propagation method. The results show that the bending loss of the proposed fiber can meet the G.657 A1 standard and the splicing loss between the bend-insensitive optical fiber and the single-mode optical fiber is less than 0.08 dB.
参考文献

[1] Chen M Y, Li Y R, Zhang Y, et al.. Design of dual-mode optical fibres for the FTTH applications[J]. Journal of Optics, 2011, 13(1): 015402.

[2] Watekar P R, Ju S M, Han W T. Single-mode optical fiber design with wide-band ultra low bending-loss for FTTH application[J]. Opt Express, 2008, 16(2): 1180-1185.

[3] P S J Russell. Photonic-crystal fibers[J]. J Lightwave Technol, 2006, 24(12): 4729-4749.

[4] 姚建铨, 王然, 苗银萍, 等. 基于液体填充微结构光纤的新型光子功能器件[J]. 中国激光, 2013, 40(1): 0101002.

    Yao Jianquan, Wang Ran, Miao Yinping, et al.. Novel photonic functional devices based on liquid-filling microstructured optical fibers[J]. Chinese J Lasers, 2013, 40(1): 0101002.

[5] 王丹, 郑义. 一种新型微结构光纤的设计与数值研究[J]. 光学学报, 2012, 32(8): 0806003.

    Wang Dan, Zheng Yi. Design and numerical investigation of a novel microstructured optical fiber[J]. Acta Optica Sinica, 2012, 32(8): 0806003.

[6] 云茂金, 梁健, 任立勇, 等. 带隙型光子晶体光纤慢光特性的优化设计[J]. 光学学报, 2013, 33(4): 0406005.

    Yun Maojin, Liang Jian, Ren Liyong, et al.. Design and optimization of slow light photonic bandgap fiber[J]. Acta Optica Sinica, 2013, 33(4): 0406005.

[7] 廖素英, 巩马理. 大模场光纤直弯过渡中的模场演变分析[J]. 中国激光, 2013, 40(3): 0305006.

    Liao Suying, Gong Mali. Analysis of mode evolution between straight and curved fiber transition in large mode area fibers[J]. Chinese J Lasers, 2013, 40(3): 0305006.

[8] F F Dai, Y G Xu, X F Chen. Tunable and low bending loss of liquid-core fiber[J]. Chin Opt Lett, 2010, 8(1): 14-17.

[9] Tsuchida Y, Saitoh K, Koshiba M. Design and characterization of single-mode holey fibers with low bending losses[J]. Opt Express, 2005, 13(12): 4770-4779.

[10] Himeno K, Matsuo S, Guan N, et al.. Low-bending-loss single-mode fibers for fiber-to-the-home[J]. J Lightwave Technol, 2005, 23(11): 3494-3499.

[11] Vu N H, Kim J T, Kim E S, et al.. Ultralow bending loss fibers with higher-order mode strippers[J]. Opt Express, 2010, 18(19): 19456-19461.

[12] Matsui T, Nakajima K, Goto Y, et al.. Design of single-mode and low-bending-loss hole-assisted fiber and its MPI characteristics[J]. J Lightwave Technol, 2011, 29(17): 2499-2505.

[13] Nakajima K, Shimizu T, Matsui T, et al.. Single-mode hole-assisted fiber as a bending-loss insensitive fiber[J]. Optical Fiber Technology, 2010, 16(6): 392-398.

[14] Ieda K, Nakajima K, Matsui T, et al.. Characteristics of bending loss optimized hole assisted fiber[J]. Optical Fiber Technology, 2008, 14(1): 1-9.

[15] Li M J, Tandon P, Bookbinder D C, et al.. Ultra-low bending loss single-mode fiber for FTTH[J]. J Lightwave Technol, 2009, 27(3): 376-382.

[16] Saitoh K, Koshiba M. Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides[J]. J Lightwave Technol, 2001, 19(3): 405-413.

[17] Saitoh K, Koshiba M. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers[J]. IEEE J Quantum Electron, 2002, 38(7): 927-933.

[18] Saitoh K, Koshiba M, Hasegawa T, et al.. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion[J]. Opt Express, 2003, 11(8): 843-852.

[19] K Saitoh, Y Tsuchida, L Rosa, et al.. Design of all-solid leakage channel fibers with large mode area and low bending loss[J]. Opt Express, 2009, 17(6): 4913-4919.

[20] L Dong, T W Wu, H A Mckay, et al.. All-glass large-core leakage channel fibers[J]. IEEE J Sel Top Quantum Electron, 2009, 15(1): 47-53.

[21] L Dong, H A McKay, L Fu, et al.. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding[J]. Opt Express, 2009, 17(11): 8962-8969.

龚天翼, 陈明阳, 周骏, 张永康. 全固态微结构弯曲不敏感型光纤研究[J]. 中国激光, 2013, 40(s1): s105003. Gong Tianyi, Chen Mingyang, Zhou Jun, Zhang Yongkang. Analysis of All-Solid Microstructured Bend-Insensitive Optical Fiber[J]. Chinese Journal of Lasers, 2013, 40(s1): s105003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!