中国激光, 2013, 40 (12): 1202008, 网络出版: 2013-12-05   

基于PPLN温度渐变控制的宽调谐中红外差频产生激光光源

Widely Tunable Mid-Infrared Difference Frequency Generation in a Temperature-Gradient-Controlled PPLN
常建华 1,2,*黄秦 1,2顾久驭 1,2王亚炜 1,2尹杰 1,2
作者单位
1 南京信息工程大学江苏省气象探测与信息处理重点实验室, 江苏 南京 210044
2 南京信息工程大学江苏省气象传感网技术工程中心, 江苏 南京 210044
摘要
提出了一种基于等周期PPLN晶体渐变式温度控制的宽带中红外差频产生(DFG)激光光源的设计新方案。理论研究结果显示,在固定抽运光波长条件下,闲频光/信号光的准相位匹配(QPM)波长接收带宽(BW)随着晶体两端温度梯度的增加而增加,但差频转换效率却随之下降。当抽运光波长固定为1.08 μm时,在均匀温度条件下中红外闲频光的QPM BW约为8 nm。固定晶体初始端的温度为30 ℃,当晶体两端的温度梯度分别设定为20 ℃、40 ℃和60 ℃时,闲频光的QPM BW可分别拓宽至35 nm、80 nm和136 nm。与此同时,QPM带内相对差频转换效率分别下降至0.2、0.095 和0.06。当晶体初始端的温度设定为90 ℃,仍保持晶体两端的温度梯度为60 ℃时,该宽带的闲频光QPM带向短波长方向平移,其波长覆盖范围为3.288~3.464 μm。
Abstract
A novel scheme for broadband mid-infrared (mid-IR) difference frequency generation (DFG) based on a temperature-gradient-controlled equal periodic PPLN is proposed. The theoretical results show that, under condition of the fixed pump wavelength, the acceptance bandwitdth (BW) of idler/signal quasi-phase matching (QPM) is increased with the temperature gradient across the crystal, whereas the conversion efficiency decreases. When the pump wavelength is 1.08 μm, the idler QPM BW is about 8 nm in the uniform temperature case. However, when the initial end temperature is 30 ℃, and the crystal temperature gradient increases to 20 ℃, 40 ℃ and 60 ℃, the idler QPM BWs are broadened to 35 nm, 80 nm and 136 nm, and the relative conversion efficiencies decrease to 0.2, 0.095 and 0.06. When the temperature at the initial crystal end and the temperature gradient are 90 ℃ and 60 ℃, respectively, the broadband idler QPM band moves to the shorter wavelengths and could cover the range of 3.288~3.464 μm.
参考文献

[1] O Tadanaga, T Yanagawa, Y Nishida, et al.. Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguide[J]. Appl Phys Lett, 2006, 88(6): 1101-1103.

[2] 汪六三, 曹振松, 王欢, 等. 宽调谐中红外差频激光及大气水汽浓度探测[J]. 光学学报, 2011, 31(4): 0414003.

    Wang Liusan, Cao Zhensong, Wang Huan, et al.. A widely tunable mid-infrared difference frequency generation laser and its detection of atmospheric water[J]. Acta Optica Sinica, 2011, 31(4): 0414003.

[3] L Ciaffoni, R Grilli, G Hancock, et al.. 3.5-μm high-resolution gas sensing employing a LiNbO3 OPM-DFG waveguide module[J]. Appl Phys B, 2009, 94(3): 517-525.

[4] 姚文明, 檀慧明, 王帆, 等. 外腔全固态连续波PPMgLN光学参量振荡器与受激拉曼散射[J]. 中国激光, 2012, 39(12): 1202008.

    Yao Wenming, Tan Huiming, Wang fan, et al.. Extra-cavity, all-solid-state continuous wave optical parametric oscillator and stimulated Raman scattering in PPMgLN[J]. Chinese J Lasers, 2012, 39(12): 1202008.

[5] 刘磊, 李宵, 肖虎, 等. 单频光纤激光器抽运的中红外连续单谐振光学参变振荡器[J]. 中国激光, 2012, 39(1): 0102001.

    Liu Lei, Li Xiao, Xiao Hu, et al.. Mid-infrared, singly resonant and continuous-wave optical parametric oscillator pumped by a single-frequency fiber laser[J]. Chinese J Lasers, 2012, 39(1): 0102001.

[6] 於杏燕, 戴世勋, 周亚训, 等. 掺铒硫系玻璃光纤的中红外增益特性模拟研究[J]. 中国激光, 2012, 39(1): 0105003.

    Yu Xingyan, Dai Shixun, Zhou Yaxun, et al.. Theoretical studies on mid-infrared gain characteristics of erbium-doped chalcogenide glass fibers[J]. Chinese J Lasers, 2012, 39(1): 0105003.

[7] F Adler, K C Cossel, M J Thorpe, et al.. Phase-stabilized, 1.5 W frequency comb at 2.8~4.8 μm[J]. Opt Lett, 2009, 34(9): 1330-1332.

[8] F K Tittel, D Richter, A Fried. Mid-infrared laser applications in spectroscopy[J]. Top Appl Phys, 2003, 89: 445-516.

[9] D Richter, D G Lancaster, F K Tittel. Development of an automated diode-laser-based multicomponent gas sensor[J]. Appl Opt, 2000, 39(24): 4444-4450.

[10] J H Chang, Q H Mao, S J Feng, et al.. Widely tunable mid-IR difference-frequency generation based on fiber lasers[J]. Opt Lett, 2010, 35(20): 3486-3488.

[11] Z S Cao, L Han, W G Liang, et al.. Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions[J]. Opt Commun, 2008, 281(14): 3878-3881.

[12] J Jiang, J H Chang, S J Feng, et al.. Mid-IR multiwavelength difference frequency generation based on fiber lasers[J]. Opt Express, 2010, 18(5): 4740-4747.

[13] J H Chang, T T Wang, Q H Mao. Widely tunable difference frequency generation around 3.4 μm using index dispersion property of PPLN[J]. Laser Phys, 2012, 22(3): 592-597.

[14] 常建华, 杨镇博, 陆洲, 等. 一种新型的基于PPLN的多波长中红外激光光源[J]. 中国激光, 2013, 40(10): 1002009.

    Chang Jianhua, Yang Zhenbo, Lu Zhou, et al.. A novel multi-wavelength mid-IR difference frequency generation laser source based on PPLN[J]. Chinese J Lasers, 2013, 40(10): 1002009.

[15] D H Jundt. Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate[J]. Opt Lett, 1997, 22(20): 1553-1555.

常建华, 黄秦, 顾久驭, 王亚炜, 尹杰. 基于PPLN温度渐变控制的宽调谐中红外差频产生激光光源[J]. 中国激光, 2013, 40(12): 1202008. Chang Jianhua, Huang Qin, Gu Jiuyu, Wang Yawei, Yin Jie. Widely Tunable Mid-Infrared Difference Frequency Generation in a Temperature-Gradient-Controlled PPLN[J]. Chinese Journal of Lasers, 2013, 40(12): 1202008.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!