光学学报, 2005, 25 (12): 1590, 网络出版: 2006-05-23   

凹形色散分布光纤中超连续谱特性分析

Supercontinuum Spectrum Generation in an Optical Fiber with a Concave Dispersion Profile
作者单位
华南师范大学量子电子学研究所,广州 510631
摘要
比较了在不同色散分布的色散渐减光纤中超连续(SC)谱的产生。结果表明,当光纤的色散值关于中心波长对称、且随着传输距离增加,经由反常色散区过渡到正常色散区的、凹形色散分布的色散渐减光纤更有利于产生平坦、带宽的超连续谱。从频域的全场方程出发,模拟了脉冲在光纤中的传输情形,发现脉冲在凹形色散分布的光纤中传输时,不仅在反常色散区能更大程度被压缩,在正常色散区由于存在零色散波长点,还能更进一步展宽,从而得到更宽、更平坦的超连续谱。在谱强为-27 dB时,谱宽可达到298 nm,比相同情况下的凸形色散的光纤中超连续谱增宽97 nm。结果显示,凹形色散分布的光纤比凸形色散分布的光纤在超连续谱的产生上有更明显的优势,可以得到更宽的超连续谱。
Abstract
The supercontinuum (SC) spectra generated are compared in dispersion decreasing fibers (DDF) with different dispersion profile. Results show that DDF with concave dispersion profile is more beneficial to generate flat and broad SC spectra, when the dispersion profile of the fiber is symmetrical to central wavelength and decreases from anomalous dispersion region to normal with propagation distance. Optical pulses propagation in fibers has been studied by utilizing total field formation in the frequency field. It is found that optical pulse can be compressed more extensively in anomalous dispersion region, furthermore, optical spectra can be further broadened because there exits a zero-dispersion wavelength in normal dispersion region, leading to the generation of a flatter and broader SC spectra. The spectral bandwidth can reach 298 nm when relative spectral intensity is -27 dB, which is 97 nm broader than that in a convex dispersion profile fiber under the same situation. It is proved by numerical calculation that DDF with concave dispersion profile can generate broader spectrum than that in DDF with convex dispersion profile under the same conditions.
参考文献

[1] Jia Dongfang, Huang Chao, Song LiJun et al.. The generation and applications of supercontinuum optical pulse[J]. Study on Optical Commnuications, 2000, 6: 22~26 (in Chinese)
贾东方,黄超,宋立军 等. 超连续(SC)光脉冲的产生及应用[J]. 光通讯研究, 2000, 6: 22~26

[2] . Morioka, K. Mori, S. Kawanishi et al.. Pulse-width tunable, self-frequency conversion of short optical pulses over 200 nm based on supercontinuum generation[J]. Electron. Lett., 1994, 30(23): 1960-1963.

[3] . Okuno, M. Onishi, M. Nishimura. Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber[J]. IEEE Photonics Technology Letters, 1998, 10(1): 72-74.

[4] . Sotobayashi, K. Kitayama. 325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fiber with pulse compression technique[J]. Electron. Lett., 1998, 34(13): 1336-1337.

[5] F. Futami, Y. Takushima, K. Kikuchi. Generation of wideband and flat supercontinuum over a 280-nm spectral range from a dispersion-flattened optical fiber with normal group-velocity dispersion[J]. Ieice Trans. Electron., 1999, E82-C(8): 1531~1535

[6] . Mori, H. Takara, S. Kawanishi. Analysis and design of supercontinuum pulse generation in a single-mode optical fiber[J]. J. Opt. Soc. Am. (B), 2001, 18(12): 1780-1792.

[7] . Mori, H. Takara, S. Kawanishi et al.. Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile[J]. Electron. Lett., 1997, 33(2): 1806-1807.

[8] Agrawl G. P.. Nonlinear Fiber Optics[M]. New York: Academic Press, 1995

[9] . Nonlinear propagation of ultrashort pulses in optical fibers: total field formulation in the frequency domain[J]. J. Opt. Soc. Am. (B), 1991, 8(2): 276.

[10] . . Enhancement of supercontinuum spectrum generation in a dispersion-decreasing fibre with a concave dispersion profile[J]. Chin. Phys. Lett., 2004, 21(6): 1089-1091.

[11] Xu Yongzhao, Xu Wencheng, Yu Bingtao et al.. Generation of supercontinuum spectrum in a dispersion-flattened and decreasing fiber due to cross-phase modulation[J]. Acta Optical Sinica, 2004, 24(6): 772~776 (in Chinese)
徐永钊,徐文成,于丙涛 等. 色散平坦渐减光纤中超连续谱的产生[J]. 光学学报, 2004, 24(6): 772~776

[12] Wang Anbin, Wu Jian, Gong Wei et al.. Experimental study on generation of ultra-short optical pulse with high extinction ratio[J]. Chin. J. Lasers, 2004, 31(3): 265~269 (in Chinese)
王安斌,伍剑,拱伟 等. 高消光比超短脉冲产生的实验研究[J]. 中国激光, 2004, 31(3): 265~269

[13] Cheng Yongzhu, Li Yuzhong, Qu Gui et al.. Numerical research of flat supercontinuum generated in dispersion-flattened/decreasing fiber[J]. Chin. J. Lasers, 2004, 31(10): 1239~1244 (in Chinese)
陈泳竹,李玉忠,屈圭 等. 色散平坦渐减光纤产生平坦超连续谱的数值研究[J]. 中国激光, 2004, 31(10): 1239~1244

[14] Chen Yongzhu, Xu Wencheng, Cui Hu et al.. The effect of fiber dispersion on generation of supercontinuum[J]. Acta Optical Sinica, 2003, 23(3): 297~301 (in Chinese)
陈泳竹,徐文成,崔虎 等. 光纤色散对超连续谱产生的影响[J]. 光学学报, 2003, 23(3): 297~301

高洁丽, 徐文成, 梁湛强, 陈巧红, 刘颂豪. 凹形色散分布光纤中超连续谱特性分析[J]. 光学学报, 2005, 25(12): 1590. 高洁丽, 徐文成, 梁湛强, 陈巧红, 刘颂豪. Supercontinuum Spectrum Generation in an Optical Fiber with a Concave Dispersion Profile[J]. Acta Optica Sinica, 2005, 25(12): 1590.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!