Photonics Research, 2017, 5 (6): 06000728, Published Online: Dec. 7, 2017   

Intracavity biosensor based on the Nd:YAG waveguide laser: tumor cells and dextrose solutions Download: 540次

Author Affiliations
1 Department of Respiration, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
2 Department of Ophthalmology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
3 Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
4 School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
5 Departamento Física Aplicada, Facultad Ciencias, Universidad de Salamanca, Salamanca 37008, Spain
Copy Citation Text

Guanhua Li, Huiyuan Li, Rumei Gong, Yang Tan, Javier Rodríguez Vázquez de Aldana, Yuping Sun, Feng Chen. Intracavity biosensor based on the Nd:YAG waveguide laser: tumor cells and dextrose solutions[J]. Photonics Research, 2017, 5(6): 06000728.

References

[1] A. B. Chinen, C. M. Guan, J. R. Ferrer, J. R. Ferrer, S. N. Barnaby, T. J. Merkel, C. A. Mirkin. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev., 2015, 115: 10530-10574.

[2] V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld. Detection of preinvasive cancer cells. Nature, 2000, 406: 35-36.

[3] T. D. Chung, H. C. Kim. Recent advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis, 2007, 28: 4511-4520.

[4] D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, S. Takayama. Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas., 2005, 26: R73-R98.

[5] M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, C. P. Grigoropoulos. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Lab Chip, 2009, 9: 311-318.

[6] Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, S. J. Skerlos. PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes. Sens. Actuators B, 2004, 98: 356-367.

[7] P. K. Ang, A. Li, M. Jaiswal, Y. Wang, H. W. Hou, J. T. L. Thong, C. T. Lim, K. P. Loh. Flow sensing of single cell by graphene transistor in a microfluidic channel. Nano Lett., 2011, 11: 5240-5246.

[8] S. Y. Yang, S. K. Hsiung, Y. C. Hung, C. M. Chang, T.-L. Liao, G.-B. Lee. A cell counting/sorting system incorporated with a microfabricated flow cytometer chip. Meas. Sci. Technol., 2006, 17: 2001-2009.

[9] F. Xing, G. X. Meng, Q. Zhang, L. T. Pan, P. Wang, Z. B. Liu, W. S. Jiang, Y. Chen, J. G. Tian. Ultrasensitive flow sensing of a single cell using graphene-based optical sensors. Nano Lett., 2014, 14: 3563-3569.

[10] C. Grivas. Optically pumped planar waveguide lasers, part I: fundamentals and fabrication techniques. Prog. Quantum Electron., 2011, 35: 159-239.

[11] F. Chen, J. R. V. de Aldana. Optical waveguides in crystalline dielectric materials produced by femtosecond—laser micromachining. Laser Photon. Rev., 2014, 8: 251-275.

[12] Y. Tan, C. Cheng, S. Akhmadaliev, S. Zhou, F. Chen. Nd:YAG waveguide laser Q-switched by evanescent-field interaction with graphene. Opt. Express, 2014, 22: 9101-9106.

[13] Y. Tan, S. Akhmadaliev, S. Zhou, S. Sun, F. Chen. Guided continuous-wave and graphene-based Q-switched lasers in carbon ion irradiated Nd:YAG ceramic channel waveguide. Opt. Express, 2014, 22: 3572-3577.

[14] R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, G. Cerullo. Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation. Appl. Phys. Lett., 2007, 90: 231118.

[15] V. Maselli, J. R. Grenier, S. Ho. Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel. Opt. Express, 2009, 17: 11719-11729.

[16] Y. Tan, R. He, C. Cheng, D. Wang, Y. Chen, F. Chen. Polarization-dependent optical absorption of MoS2 for refractive index sensing. Sci. Rep., 2014, 4: 7523.

[17] J. Lv, Z. Shang, Y. Tan, J. R. V. de Aldana, F. Chen. Cladding-like waveguide fabricated by cooperation of ultrafast laser writing and ion irradiation: characterization and laser generation. Opt. Express, 2017, 25: 19603-19608.

[18] Y. Tan, X. Liu, Z. He, Y. Liu, M. Zhao, H. Zhang, F. Chen. Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: optical evidences and photonic applications. ACS Photon., 2017, 4: 1531-1538.

[19] E. Lallier, J. P. Pocholle, M. Papuchon, M. P. De Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, E. Pelletier. Nd: MgO: LiNbO/sub 3/channel waveguide laser devices. IEEE J. Quantum Electron., 1991, 27: 618-625.

Guanhua Li, Huiyuan Li, Rumei Gong, Yang Tan, Javier Rodríguez Vázquez de Aldana, Yuping Sun, Feng Chen. Intracavity biosensor based on the Nd:YAG waveguide laser: tumor cells and dextrose solutions[J]. Photonics Research, 2017, 5(6): 06000728.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!