红外与毫米波学报, 2019, 38 (1): 68, 网络出版: 2019-03-19   

低损耗太赫兹波导及其成像应用

Low-loss terahertz waveguide and its imaging application
作者单位
1 南开大学 现代光学研究所, 天津 300350
2 天津市交通运输工程质量安全监督总站, 天津 300384
摘要
高性能的太赫兹功能器件在太赫兹波的产生、传输及探测上都有着重要意义.报道了一种Kagome型低损耗太赫兹波导及其成像应用.首先根据反谐振波导理论设计了0.1 THz处低损耗的太赫兹波导, 其理论损耗低至0012 cm-1.然后使用3D打印技术制备波导实物, 实验测得其损耗为0.0153 cm-1, 波导末端光束发散角为6±05°.最后基于该波导搭建了可重构太赫兹成像装置, 分别实现了对隐藏刀片、矿石的反射和透射成像, 在地下远距离勘探领域具有潜在的应用前景.
Abstract
High-performance terahertz functional devices have great significance in the generation, transmission and detection of terahertz waves. This paper reports a Kagome-type low-loss terahertz waveguide and its imaging applications. Firstly, anti-resonant waveguide theory was used to design a Kagome terahertz waveguide with low loss transmission at 0.1 THz, which has a theoretical loss as low as 0.012 cm-1. Secondly, the waveguide was fabricated by 3D printing technology. The experimental loss is 0.0153 cm-1, and the beam divergence angle at the end of the waveguide is about 6±0.5 degree. Finally, a reconfigurable terahertz imaging system was set up based on the waveguide, which realizes reflection and transmission imaging for a hidden blade and ore respectively. This technology has great application prospects in the underground long-distance exploration.
参考文献

[1] Ferguson B, Zhang X C. Materials for terahertz science and technology [J]. Physics, 2002, 1(1): 26-33.

[2] Tonouchi M. Cutting-edge terahertz technology [J]. Nature Photonics, 2007, 1(2):97-105.

[3] Lee Y. Principles of Terahertz Science and Technology [M]. Springer US, 2009, 17(6):47-47.

[4] LIU Sheng-gang, ZHONG Ren-bin. Recent Development of Terahertz Science and Technology and It's Applications [J]. Journal of university of electronic science and technology of china, 2009, 38(5): 481-486.

[5] Kawase K. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints [J]. Optics Express, 2003, 11(20): 2549-2554.

[6] Woodward R M, Cole B E, Wallace V P, et al. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue [J]. Physics in Medicine & Biology, 2002, 47(21):3853-3863.

[7] Cooper K B, Dengler R J, L lombart N, et al. Penetrating 3-D imaging at 4-and 25-m range using a submillimeter-wave radar [J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 2771-2778.

[8] Gallot G, Jamison S P, McGowan R W, et al. Terahertz waveguide [J]. Journal of the Optical Society of America B, 2000, 17(5):851-863.

[9] Mittleman D M, Wang K L. Metal wires for terahertz wave guiding [J]. Nature, 2004, 432(7015): 376-379.

[10] Lu J Y, Yu C P, et al.Terahertz air-core microstructure fiber [J]. Applied Physics Letters,2008, 92(6):5263-400.

[11] Jing Yang, Jiayu Zhao, Cheng Gong, et al. 3D printed low-loss THz waveguide based onKagome photonic crystal structure [J]. Optical Express, 2016, 24(20):22454.

[12] Hu B B and Nuss M C .Imaging with terahertz waves [J]. Optics Letters, 1995, 20(16):1716.

[13] Catherine Z. THz imaging of space shuttle foam [J]. Nature, 2003, 14:721-722.

[14] Siebert K J, Quast H, et al. Continuous-wave all-optoelectronic terahertz imaging [J]. Applied Physics Letters. 2002, 80(16):3003-3005.

[15] Darmo J, Tamosiunas V, Fasching G, et al. Imaging with a terahertz quantum cascade laser [J]. Optics Express, 2004, 12(9):1879-1884.

[16] Dobroiu A, Yamashita M, Ohshima Y N, et al. Terahertz imaging system based on a backward-wave oscillator [J]. Applied Optics, 2004, 43(30):5637-46.

[17] Duling I, Zimdars D. Terahertz imaging revealing hidden defects [J]. Nature Photonics, 2009, 3(11):630-632.

[18] Flammini M, Bonsi C, Ciano C, et al. Confocal Terahertz Imaging of Ancient Manuscripts [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38:1-8.

[19] Duguay M A, Kokubun Y, Koch T L,et al. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures [J]. Applied Physics Letters,1986,49(1):13-15.

李帅, 戴子杰, 高翔, 占涛, 赵得龙, 龚诚, 刘伟伟. 低损耗太赫兹波导及其成像应用[J]. 红外与毫米波学报, 2019, 38(1): 68. LI Shuai, DAI Zi-Jie, GAO Xiang, ZHAN Tao, ZHAO De-Long, GONG Cheng, LIU Wei-Wei. Low-loss terahertz waveguide and its imaging application[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 68.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!