中国激光, 2013, 40 (7): 0702012, 网络出版: 2013-07-01   

全固态石墨烯锁模激光器的脉冲特性分析

Pulse Characteristics Analysis of All-Solid-State Mode-Locked Laser with Graphene
作者单位
北京工业大学应用数理学院, 北京 100124
摘要
为研究腔参数和石墨烯的可饱和吸收特性对脉冲特性的影响,数值求解了描述激光器动力学的Haus主方程。采用饱和吸收体的快饱和模型,分析了谐振腔腔长、石墨烯层数、输出镜透射率和激光晶体上光斑半径的变化对脉冲特性的影响,并与半导体可饱和吸收镜(SESAM)做了比较。结果表明,石墨烯和SESAM各具优势,例如在腔长短且可饱和吸收体上光斑半径小时选择石墨烯,在腔长长且光斑半径大时选择SESAM,分别能获得峰值功率更高的脉冲激光。故应根据具体的实验情况选择适当的可饱和吸收体和腔参数。
Abstract
The Haus master equation which describes the laser dynamics is solved numerically so as to study the effects of cavity parameters and characteristics of graphene saturable absorber on the pulses characteristics. Adopting the fast saturable absorber model, the relations between pulse characteristics with cavity length, graphene layers, transmittances of output mirror and beam radius on the laser medium are analyzed. In addition, the results are compared with that of semiconductor saturable absorption miror (SESAM). The conclusions show that the graphene and SESAM have different advantages. For example, for higher pulse energy, graphene is favorable for shorter cavity length and smaller radius on saturable absorber, while the SESAM is better for the opposite situation. The saturable absorbers and cavity parameters should be chosen properly according to concrete situations.
参考文献

[1] U Keller. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838.

[2] K Schutze, H Posl, G Lahr. Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine[J]. Cell Mol Biol, 1998, 44(5): 735-746.

[3] C Honninger, G Zhang, U Keller, et al.. Femtosecond Yb:YAG laser using semiconductor saturable absorbers[J]. Opt Lett, 1995, 20(23): 2402-2405.

[4] 陈檬,张丙元,李港, 等. 半导体可饱和吸收镜被动锁模NdYAG激光器的研究[J]. 中国激光, 2004, 31(6): 646-648.

    Chen Meng, Zhang Bingyuan, Li Gang, et al.. Study on SESAM passively-mode-locked NdYAG laser[J].Chinese J lasers, 2004, 31(6): 646-648.

[5] A Garcia-Cortes, J M Cano-Torres, M D Serrano, et al.. Spectroscopy and lasing of Yb-doped NaY(WO4) 2: tunable and femtosecond mode-locked laser operation[J]. IEEE J Quantum Electron, 2007, 43(9): 758-764.

[6] Z P Sun, T Hasan, T Felice, et al.. Graphene mode-locked ultrafast laser[J]. Acs Nano, 2010, 4(2): 803-810.

[7] 何京良,郝霄鹏,徐金龙, 等. 基于石墨烯可饱和吸收被动锁模超快全固体激光器的研究[J]. 光学学报,2011, 31(9): 0900138.

    He Jingliang, Hao Xiaopeng, Xu Jinlong, et al.. Ultrafast mode-locked solid-state lasers with graphene saturable absorber[J]. Acta Optica Sinica, 2011, 31(9): 0900138.

[8] 王勇刚,曲遵世,刘杰, 等. 碳基吸收体被动锁模大功率皮秒激光器[J]. 中国激光,2012, 39(7): 0702001.

    Wang Yonggang, Qu Zunshi, Liu Jie, et al.. High power picosecond laser mode locked with carbon based absorbers[J]. Chinese J Lasers, 2012, 39(7): 0702001.

[9] M Breusing, C Ropers, T Elsaesser. Ultrafast carrier dynamics in graphite[J]. Phys Rev Lett, 2009, 102(8): 086809.

[10] W Lu, L Yan, C R Menyuk. Dispersion effects in an actively mode-locked inhomogeheously broadened laser[J]. IEEE J Quantum Electron, 2002, 38(10): 1317-1324.

[11] 曹轶乐,于丽,杨伯君. 固体激光器中色散与自相位调制对脉冲的影响[J]. 激光技术,2005, 29(3): 248-250.

    Cao Yile, Yu Li, Yang Bojun. Effects of dispersion and self-phase modulation on pulses in solid-state laser[J]. Laser Technology, 2005, 29(3): 248-250.

[12] H A Haus. Theory of mode-locking with a fast saturable absorber[J]. J Appl Phys, 1975, 46(7): 3049-3058.

[13] F X Kartner, I D Jung, U Keller. Soliton mode-locking with saturable absorber[J]. IEEE J Select Topics Quantum Electron, 1996, 2(3): 540-556.

王劼予, 王丽, 包传辰. 全固态石墨烯锁模激光器的脉冲特性分析[J]. 中国激光, 2013, 40(7): 0702012. Wang Jieyu, Wang Li, Bao Chuanchen. Pulse Characteristics Analysis of All-Solid-State Mode-Locked Laser with Graphene[J]. Chinese Journal of Lasers, 2013, 40(7): 0702012.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!