红外与激光工程, 2017, 46 (11): 1122001, 网络出版: 2017-12-26   

室内VLC系统光源布局设计

Design of the layout of lighting for indoor VLC system
作者单位
西安工业大学 电子信息工程学院, 陕西 西安 710021
摘要
在可见光通信系统中, 光源具有照明和通信的双重作用, 由于房间的大小以及室内环境各不相同, 难免会存在光照射不到或者光线比较微弱的地方, 这些地方很有可能成为通信的盲区, 这将会大大影响通信的质量, 为了解决阴影效应, 需合理对光源进行布局设计, 以4 m×4 m×3 m房间为模型, 采用四个LED列阵作为室内光源, 将单个的LED光源看做朗伯光源, 服从朗伯辐射模型, 通过公式计算结合软件仿真分析对比得出了采用9×9大小的LED列阵, 列阵距离屋顶边缘0.4 m, LED光源间的间距为0.03 m时, 在满足国际室内照明标准的前提下, 在距离屋顶2.25 m的4 m×4 m接收平面上光照度分布最均匀,其均匀度达到90.4%。该光源列阵布局模型可推广到任意尺寸房间, 为室内办公照明中光源的布局提供了一种可行的方案。
Abstract
In the visible light communication system, the light source has a double function of illumination and communication. As the size of the room and the indoor environment is different, it is inevitable that there will be somewhere with less light irradiation or the light is weak. These places are likely to become a communication blindzone, which will greatly affect the quality of the communication. In order to solve the shadow effect, a rational layout of the light source is needed. Based on 4 m×4 m×3 m room model, four LED array was adopted as indoor lighting. A single LED light source was considered as a lambert illuminant, which obeyed the Lamber tradiation model. Through formula and software simulation analysis, it was known that when the size of LED array was 9×9 and the distance from LED array to the edge of roof was 0.4 m and the spacing between the LED light source was 0.03 m, the illumination distribution was most uniform in the horizontal plane of 2.25 m from the roof on the premise of meeting the international standard of indoor lighting. And the uniformity of illumination is 90.4% in the 4 m×4 m receiving plane. The model of layout of light source array can be extended to any size of the room in this paper, which provides a feasible solution for the layout of the indoor office lighting source.
参考文献

[1] 郭倩, 蓝天, 朱祺, 等. 室内可见光通信APD探测电路的设计与实现[J]. 红外与激光工程, 2015, 44(2): 731-735.

    Guo Qian, Lan Tian, Zhu Qi, et al. Design and implementation of indoor light communication avalanche photodiode detecting circuit[J]. Infrared and Laser Engineering, 2015, 44(2): 731-735. (in Chinese)

[2] 丁德强, 柯熙政. 可见光通信及其关键技术研究[J]. 半导体光电, 2006, 27(2): 114-117.

    Ding Deqiang, Ke Xizheng. Visible light communication and research on its key techniques[J]. Semiconductor Optoelectronics, 2006, 27(2): 114-117. (in Chinese)

[3] 沈振民, 蓝天, 王云, 等. 基于LED灯的室内可见光通信系统仿真分析[J]. 红外与激光工程, 2015, 44(8): 2496-2500.

    Shen Zhenmin, Lan Tian, Wang Yun, et al. Simulation and analysis for indoor visible-light communication based on LED[J]. Infrared and Laser Engineering, 2015, 44(8): 2496-2500. (in Chinese)

[4] Ding Jupeng, Huang Zhitong, Ji Yuefeng. Evolutionary algorithm based uniform received power & illumination rendering for indoor visible light communication [J]. Journal of the Optical Society of America A, 2012, 29(6): 971-979.

[5] 李远兴, 龙拥兵, 梁文跃, 等. 基于COB LED的均匀光强分布可见光通信发射端光学设计[J]. 光学学报, 2016, 36(10): 1022002.

    Li Yuanxing, Long Yongbing, Liang Wenyue, et al. Optically designing COB LED based transmitter with uniform luminous intensity distribution for visible light communication[J]. Acta Optica Sinica, 2016, 36(10): 1022002. (in Chinese)

[6] 李林, 王光珍, 王丽莉, 等. 实现均匀照明的LED系统设计方法[J]. 光学学报, 2012, 32(2): 0222002.

    Li Lin, Wang Guangzhen, Wang Lili, et al. Lens design for uniform illumination with LED[J]. Acta Optica Sinica, 2012, 32(2): 0222002. (in Chinese)

[7] 傅玉青. 采用遗传算法的可见光通信LED阵列分布优化[J]. 华侨大学学报(自然科学版), 2015, 36(6): 632-635.

    Fu Yuqing. Optimization of LED array distribution in visible light communication based on genetic[J]. Journal of Huaqiao University(Natural Science), 2015, 36(6): 632-635. (in Chinese)

[8] Ding J P, Huang Z, Ji Y. Evolutionary algorithm based power coverage optimization for visible light communications [J]. Communications Letters, IEEE, 2012, 16(4): 493-441.

[9] Zixiong W, Yu Changyuan. Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communcation system[J]. Optics Express, 2012, 20(4): 4564-4573.

[10] 丁德强, 柯熙政, 李建勋. VLC系统的光源布局设计与仿真研究[J]. 光电工程, 2007, 34(1): 131-134.

    Ding Deqiang, Ke Xizheng, Li Jianxun. Design and simulation on the layout of lighting for VLC system[J]. Opto-Electronic Engineering, 2007, 34(1): 131-134. (in Chinese)

[11] Barry J R. Wireless Infrared Communications [M]. Berlin: Springer, 1994.

[12] Weast R C. CRC Handbook of Chemistry and Physics [M]. Boca Raton: CRC Press, 1983.

[13] Kahn J M, Barry J R. Wireless infrared communications [J]. Proceedings of the IEEE, 1997, 85(2): 265-298.

[14] 袁樵. 国际照明委员会照明标准--室内工作场所照明[J]. 照明工程学报, 2002, 4: 55-60.

    Yuan Qiao. CIE standard lighting-lighting indoor workplaces[J]. China Illuminating Engineering, 2002, 4: 55-60. (in Chinese)

[15] 王佳媛. LED照明通信系统发射与接收关键技术研究[D].大连: 大连工业大学, 2013.

    Wang Jiayuan. Research on the key technologies of transmitter and receiver for LED lighting communication system[D]. Dalian: Dalian Polytechnic University, 2013. (in Chinese)

赵黎, 彭恺, 焦晓露. 室内VLC系统光源布局设计[J]. 红外与激光工程, 2017, 46(11): 1122001. Zhao Li, Peng Kai, Jiao Xiaolu. Design of the layout of lighting for indoor VLC system[J]. Infrared and Laser Engineering, 2017, 46(11): 1122001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!