红外与毫米波学报, 2018, 37 (4): 459, 网络出版: 2019-01-10   

基于热红外的四种土壤含水量估算方法对比

Estimation of surface soil moisture based on thermal remote sensing: Intercomparison of four methods
作者单位
1 中国科学研究院地理科学与资源研究所 陆地水循环及地表过程重点实验室, 北京 100101
2 中国水利水电科学研究院 防洪抗旱减灾工程技术中心, 北京 100038
3 中山大学 地理科学与规划学院 广东省城市化与地理环境空间模拟重点实验室, 广东 广州 510275
摘要
基于遥感的区域土壤水分反演是流域水资源规划管理、农作物灌溉制度制定、区域旱情监测、农作物估产等方面的基础.本文对四种可见光/热红外土壤水分反演方法进行评估对比, 这四种土壤水分估算方法包括基于温度植被干旱指数(TVDI)的土壤水分估算方法和三种基于蒸散比/潜在蒸散比的土壤水分估算方法(EFM1, EFM2和EFM3).基于以上四种土壤水分估算方法, 本文使用ASTER数据估算了黑河流域中游地区的土壤水分状况, 使用研究区内生态水文无线传感器网络和流域水文气象观测站点的土壤水分观测对四个模型进行了验证评估.结果表明, TVDI方法因其干、湿边确定的经验性, 会导致土壤水分估算的误差.而基于蒸散比/潜在蒸散比的土壤水分估算方法会在一定程度改善TVDI方法估算的经验性.通过蒸散比/潜在蒸散比的三种方法对比显示基于EFM1和EFM3方法优于EFM2方法.此外, 基于热红外的土壤水分估算方法都需要土壤参数信息, 土壤参数的不确定性会导致土壤水分估算的误差, 高精度的土壤参数会改善基于热红外的土壤水分估算方法的精度.
Abstract
Remote sensing-based estimation of soil moisture is crucial in many aspects including basin-scale water resource management, irrigation scheduling, regional scale drought monitoring and crop yield forecasting. In this study, we evaluate the potential of visible/thermal-infrared remote sensing in soil moisture estimation, by assessing the TVDI-based method and three categories of methods based on evaporative fraction/potential evaporation ratio (EFM1, EFM2 and EFM3). In combination with ASTER data set, soil moisture in middle reach of the Heihe River Basin is predicted by the above-mentioned four methods and validated by the ground-based measurements from eco-hydrological wireless sensor network and hydro meteorological observation network in the middle reach of Heihe river basin. Results indicate that uncertainties arise from the empiricism of the TVDI-based method in the process of determining dry and wet edges. On the other hand, the evaporation fraction/potential evaporation ratio methods can to some degree reduce the uncertainties, and among the three methods, EFM1 and EFM3 outperform EFM2. In addition, the thermal-infrared based methods require accurate soil parameters to reproduce the variation of soil moisture.
参考文献

[1] Koster R D, Suarez M J. Soil moisture memory in climate models[J]. Journal of hydrometeorology, 2001, 2:558-570.

[2] Legates D R, Mahmood R, Levia D F, et al. Soil moisture: A central and unifying theme in physical geography[J]. Progress in Physical Geography, 2011, 35:65-86.

[3] Rodriguez-Iturbe I, D'odorico P, Porporato A, et al. On the spatial and temporal links between vegetation, climate, and soil moisture[J]. Water Resources Research, 1999, 35: 3709-3722.

[4] Seneviratne S I, Corti T, Davin E L, et al. Investigating soil moisture–climate interactions in a changing climate: A review[J]. Earth-Science Reviews, 2010, 99: 125-161.

[5] Ahmadalipour A, Moradkhani H, Yan H, et al. Remote sensing of drought: Vegetation, soil moisture, and data assimilation[J]. In Remote sensing of hydrological extremes, Springer: 2017; pp 121-149.

[6] Mohanty B P, Cosh M H, Lakshmi V, et al. Soil moisture remote sensing: State-of-the-science[J]. Vadose Zone Journal, 2017, DOI: 10.2136/vzj2016.10.0105.

[7] Peng J, Loew A. Recent advances in soil moisture estimation from remote sensing[J]. Multidisciplinary Digital Publishing Institute, 2017, DOI: 10.3390/w9070530.

[8] Zhang D, Zhou G. Estimation of soil moisture from optical and thermal remote sensing: A review[J]. Sensors, 2016, 16:1308.

[9] Price J C. The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation[J]. Water Resources Research, 1980, 16:787-795.

[10] Petropoulos G, Carlson T, Wooster M,et al. A review of ts/vi remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture[J]. Progress in Physical Geography, 2009, 33:224-250.

[11] Carlson T N, Gillies R R, Perry E M. A method to make use of thermal infrared temperature and ndvi measurements to infer surface soil water content and fractional vegetation cover[J]. Remote sensing reviews, 1994, 9:161-173.

[12] Nemani R R, Running S W. Estimation of regional surface resistance to evapotranspiration from ndvi and thermal-ir avhrr data[J]. Journal of Applied meteorology, 1989, 28: 276-284.

[13] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of environment, 2002, 79:213-224.

[14] HAN Li-Juan, WANG Peng-Xin, WANG Jin-Di, et al. Study on the VI-LST characteristic space[J]. Science in China(Series D) (韩丽娟, 王鹏新, 王锦地, 等. 植被指数—地表温度构成的特征空间研究. 中国科学:D辑),2005, 35:371-377.

[15] QI Su-Hua, LI Gui-Cai, WANG Chang-Yao, et al. Study on monitoring drought in China using MODIS products[J]. Advances in Water Science (齐述华, 李贵才, 王长耀, 等. 利用 MODIS 数据产品进行全国干旱监测的研究. 水科学进展),2005, 16(1): 56-61.

[16] Allen R G, Tasumi M, Trezza R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (metric)—model[J]. Journal of irrigation and drainage engineering, 2007, 133:380-394.

[17] Bastiaanssen W G, Menenti M, Feddes R, et al. A remote sensing surface energy balance algorithm for land (sebal).1. Formulation[J]. Journal of hydrology, 1998, 212:198-212.

[18] Norman J M, Kustas W P, Humes K S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature[J]. Agricultural and Forest Meteorology, 1995, 77:263-293.

[19] Scott C A, Bastiaanssen W G, Ahmad M.-u.-D. Mapping root zone soil moisture using remotely sensed optical imagery[J]. Journal of Irrigation and Drainage Engineering, 2003, 129:326-335.

[20] Hong S-h., Lenth K,Aumer R,et al. Spatial variability of sebal estimated root-zone soil moisture across scales[J]. International Journal of Remote Sensing, 2016, 37:4838-4853.

[21] Mohamed Y, Bastiaanssen W, Savenije H. Spatial variability of evaporation and moisture storage in the swamps of the upper nile studied by remote sensing techniques[J]. Journal of hydrology, 2004, 289:145-164.

[22] Anderson M C, Norman J M, Mecikalski J R, et al. A climatological study of evapotranspiration and moisture stress across the continental united states based on thermal remote sensing: 1. Model formulation[J]. Journal of Geophysical Research: Atmospheres, 2007, 112: DOI: 10.1029/2006JD007506.

[23] Anderson M C, Norman J M, Mecikalski J R, et al. A climatological study of evapotranspiration and moisture stress across the continental united states based on thermal remote sensing: 2. Surface moisture climatology[J]. Journal of Geophysical Research: Atmospheres, 2007, 112: DOI: 10.1029/2006JD007507.

[24] Hain C R, Mecikalski , Anderson M C. Retrieval of an available water-based soil moisture proxy from thermal infrared remote sensing. Part i: Methodology and validation[J]. Journal of Hydrometeorology, 2009, 10:665-683.

[25] Hain C R, Crow W T, Mecikalski J R, et al. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling[J]. Journal of Geophysical Research: Atmospheres, 2011, 116: DOI: 10.1029/2011JD015633

[26] Peng J, Loew A, Merlin O, et al. A review of spatial downscaling of satellite remotely sensed soil moisture[J]. Reviews of Geophysics, 2017.

[27] Kim J, Hogue T S. Improving spatial soil moisture representation through integration of amsr-e and modis products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50: 446-460.

[28] Merlin O, Al Bitar A, Walker J P, et al. An improved algorithm for disaggregating microwave-derived soil moisture based on red, near-infrared and thermal-infrared data[J]. Remote Sensing of Environment, 2010, 114:2305-2316.

[29] Merlin O, Rudiger C, Al Bitar A, et al. Disaggregation of smos soil moisture in southeastern australia[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50:1556-1571.

[30] Carlson T. An overview of the" triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery[J]. Sensors, 2007, 7:1612-1629.

[31] Su H, Tian J, Chen S, et al. In a new algorithm to automatically determine the boundary of the scatter plot in the triangle method for evapotranspiration retrieval[C]. Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, 2011, pp 2817-2820.

[32] Kustas W P, Norman J M. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover[J]. Agricultural and Forest Meteorology, 1999, 94:13-29.

[33] Kustas W P, Norman J M. A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces[J]. Agronomy Journal, 2000, 92: 847-854.

[34] Colaizzi P D, Kustas W P, Anderson M C, et al. Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures[J]. Advances in Water Resources, 2012, 50:134-151.

[35] Bastiaanssen W G, Molden D J, Makin I W. Remote sensing for irrigated agriculture: Examples from research and possible applications[J]. Agricultural water management, 2000, 46:137-155.

[36] Lee T J, Pielke R A. Estimating the soil surface specific humidity[J]. Journal of Applied Meteorology, 1992, 31:480-484.

[37] LI Xin, LIU Shao-Min, MA Ming-Guo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Advances in Earth Science (李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计. 地球科学进展), 2012, 27:481-498.

[38] JIN Rui, LI Xin, YAN Bao-Ping, et al. Introduction of eco-hydrological wireless sensor network in the Heihe River Basin[J]. Advances in Earth Science (晋锐, 李新, 阎保平, 罗万明, 等. 黑河流域生态水文传感器网络设计.地球科学进展),2012, 27:993-1005.

[39] Choi M, Kustas W P, Anderson M C, et al. An intercomparison of three remote sensing-based surface energy balance algorithms over a corn and soybean production region (iowa, us) during smacex[J]. Agricultural and Forest Meteorology, 2009, 149: 2082-2097.

[40] Gonzalez-Dugo M P, Neale C M U, Mateos L, et al. A comparison of operational remote sensing-based models for estimating crop evapotranspiration[J]. Agricultural and Forest Meteorology, 2009, 149:1843-1853.

[41] Huang C, Li Y, Gu J, et al. Improving estimation of evapotranspiration under water-limited conditions based on sebs and modis data in arid regions[J]. Remote Sensing, 2015, 7:16795-16814.

[42] Moran M S, Clarke T R, Inoue Y, et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J]. Remote Sensing of Environment, 1994, 49:246-263.

[43] Zhang R H, Sun X M, Wang W M, et al. An operational two-layer remote sensing model to estimate surface flux in regional scale: Physical background[J]. Science in China Series D-Earth Sciences, 2005, 48: 225-244.

杨永民, 邱建秀, 苏红波, 田静, 张仁华. 基于热红外的四种土壤含水量估算方法对比[J]. 红外与毫米波学报, 2018, 37(4): 459. YANG Yong-Min, QIU Jian-Xiu, SU Hong-Bo, TIAN Jing, ZHANG Ren-Hua. Estimation of surface soil moisture based on thermal remote sensing: Intercomparison of four methods[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 459.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!