光散射学报, 2018, 30 (2): 143, 网络出版: 2018-08-04  

基于氰基苯硼酸探针的尿液中微量葡萄糖的特异性检测研究

Specific Determination of Trace Amount of Glucose in Urine Based on Cyanophenylboronic Acids Probe
作者单位
1 中山大学化学学院,广州 510275
2 广东食品药品职业学院医疗器械学院,广州 510520
3 中山大学测试中心,广州 510275
4 中山大学广东省显示材料与技术重点实验室,广州 510275
摘要
尿液中葡萄糖的高灵敏度、特异性定量检测在临床诊断中具有十分重要的意义。本工作在基于表面增强拉曼散射光谱(SERS)法的尿液葡萄糖定量检测中,采用4-氰基苯硼酸(4-CPBA)为二级糖探针。此探针不需要与SERS活性基底结合,并且氰基(CN)的特征峰2226 cm-1位于SERS光谱的生物寂静区(1800~2800 cm-1),从而避免了其他内源性生物分子的干扰。本方法对葡萄糖分子具有高度选择性,可有效避免尿液中果糖、半乳糖等其他糖类物质的干扰。本实验方法成功实现了尿糖的特异性检测,检测限低至10 nM,并检测出了轻微糖尿病患者尿液中的微量葡萄糖。实验结果表明,本方法为尿糖检测提供了一种专一性强,灵敏度高的分析手段,为后续定量检测提供了有力的工具。
Abstract
The quantitative detection of glucose in urine with high sensitivity and specificity is of great significance in clinical diagnosis.This work utilized 4-Cyanophenylboronic acid (4-CPBA)as a secondary carbohydrate probe in a surface-enhanced Raman spectroscopy (SERS)-based urine glucose quantification assay.This assay protocol does not require the conjugation of the probe to the SERS substrate.Furthermore,the characteristic Raman peak of cyano group at 2226 cm-1 was located in the biological silent region (1800-2800 cm-1),thus avoiding interference by other endogenous biological molecules.This method allows high selectivity of glucose over other carbohydrate such as fructose and galactose.This method has been successfully applied for specific detection of urine glucose,with the detection limit down to 10 nM.Furthermore,the glucose content in urine from patients with mild diabetes was successfully detected.The experimental results show that this method offers a highly specific and sensitive way for the determination of glucose in urine,as a potential powerful tool for subsequent quantitative analysis.
参考文献

[1] 潘艳,吴旭,孙会,等.在糖尿病诊断中血糖、尿糖检测的应用价值[J].临床医药文献杂志,2016,3(54):10798-10799.

[2] 曹研.尿液整体化分析与尿沉渣图谱[M].云南:云南民族出版社,2006:6-20.(CAO Yan.Atlas of urinary sediment and holistic analysis[M].Yunnan:The Nationalities Publishing House of Yunnan,2006:6-20.)

[3] RAVE K,NOSEK L,POSNER J,et al.Renal glucose excretion as a function of blood glucose concentration in subjects with type 2 diabetes-results of a hyperglycaemic glucose clamp study[J].Nephrol Dial Transplant,2006,21(8):2166-2171.

[4] MA W,KUANG H,XU L G,et al.Attomolar DNA detection with chiral nanorod assemblies[J].Nat Commun,2013,4(10):2689.

[5] ZHU Y Y,KUANG H,XU L G,et al.Gold nanorod assembly based approach to toxin detection by SERS[J].J Mater Chem,2012,22(6):2387-2391.

[6] KONG K V,HO C J H,GONG T,et al.Sensitive SERS glucose sensing in biological media using alkyne functionalized boronic acid on planar substrates[J].Biosens Bioelectron,2014,56(24):186-191.

[7] JOHNER S A,LIBUDA L,SHI L,et al.Urinary fructose:a potential biomarker for dietary fructose intake in children[J].European Journal of Clinical Nutrition,2010,64(11):1365-1370.

[8] TYGSTRUP N.The urinary excretion of galactose and its significance in clinical intravenous galactose tolerance tests[J].Acta Physiologica,2010,51(2-3):263-274.

[9] KONG K V,LAM Z,LAU W K,et al.A transition metal carbonyl probe for use in a highly specific and sensitive SERS-based assay for glucose[J].J Am Chem Soc,2013,135(48):18028-18031.

[10] LUDWIG R,SHIOMI Y SHINKAI S.Saccharide recognition by amphiphilic diboronic acids at the air-water interface and the relationship between selectivity and stoichiometry[J].Langmuir,1994,10(9):3195-3200.

[11] TORUL H,IFTI H,DUDAK F C,et al.Glucose determination based on a two component self-assembled monolayer functionalized surface-enhanced Raman spectroscopy (SERS)probe[J].Anal Methods,2014,6(14):5097-5104.

[12] MATSUMOTO A,Ikeda S,Harada A,et al.Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions[J].Biomacromolecules,2003,4(5):1410-1416.

[13] SHAFER-PELTIER K E,HAYNES C L,GLUCKSBERG M R,et al.Toward a glucose biosensor based on surface-enhanced Raman scattering[J].J Am Chem Soc,2003,125:588-593.

[14] MATSUMOTO A,YAMAMOTO K,YOSHIDA R,et al.A totally synthetic glucose responsive gel operating in physiological aqueous conditions[J].Chem Commun,2010,46:2203-2205.

[15] MATSUMOTO A,ISHII T,NISHIDA J et al.A synthetic approach toward a self-regulated insulin delivery system[J].Angew Chem,2012,124:2166 -2170.

[16] James T D.Saccharide-selective boronic acid based photoinduced electron transfer (PET)fluorescent sensors.Creative chemical sensor systems[M].Springer:Berkin,2007:107-152.

[17] 浮钰,张卫红,陈建,等.运用金‐银核壳结构纳米棒的表面增强拉曼效应检测超痕量葡萄糖[J].分析测试学报,2015,34(6):652-657.(FU Yu,ZHANG Weihong,GONG Li.Detection of ultra-trace glucose based on Au@ Ag NRs as SERS substrate[J].Journal of Instrumental Analysis,2015,34(6):652-657.)

[18] CHEN Q L,FU Y,CHEN J,et al.Highly sensitive detection of glucose:a quantitative approach employing nanorods assembled plasmonic substrate[J].Talanta,2017,165:516-521.

[19] CHEN H J,SHAO L,LI Q,et al.Gold nanorods and their plasmonic properties[J].Chem Soc Rev,2013,42(7):2679-2724.

[20] LUO L B,CHEN L M,ZHANG M L,et al.Unraveling the evolution and nature of the plasmons in (Au core)—(Ag shell)nanorods[J].J Phys Chem C,2009,113:9191-9196.

[21] BECKER J,ZINS I,JAKAB A,et al.Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods[J].Nano Lett,2008,8(6):1719-1723.

[22] CHALMERS J M,GRIFFITHS P R.Handbook of vibrational spectroscopy[M].Wiley:New York,2002:759-774.

浮钰, 陈秋兰, 张卫红, 叶穗波, 张浩, 谢方艳, 龚力, 金浩宇, 陈建. 基于氰基苯硼酸探针的尿液中微量葡萄糖的特异性检测研究[J]. 光散射学报, 2018, 30(2): 143. FU Yu, CHEN Qiulan, ZHANG Weihong, YE Suibo, ZHANG Hao, XIE Fangyan, GONG Li, JIN Haoyu, CHEN Jian. Specific Determination of Trace Amount of Glucose in Urine Based on Cyanophenylboronic Acids Probe[J]. The Journal of Light Scattering, 2018, 30(2): 143.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!