强激光与粒子束, 2014, 26 (3): 030201, 网络出版: 2014-03-31   

高重复频率脉冲功率技术及其应用:(6)代表性的应用

Repetition rate pulsed power technology and its applications:(ⅵ) Typical applications
作者单位
清华大学 电机系, 北京 100084
摘要
综合介绍了高重复频率脉冲功率在材料、环保、生物·医疗、光源和高能加速器领域的代表性应用。采用脉冲功率的离子注入和表面改性已经被用于工业产品。废气和废液处理的研究成果正在向实用化接近。使用脉冲电场的杀菌和癌症治疗正在吸引很多学者和厂家,因此脉冲功率在生物医学领域的应用前景是非常乐观的。另外,决定未来集成电路工艺标准的极紫外光源已逐步走向生产线。高能加速器上的闸流管会渐渐被功率半导体器件取代。
Abstract
This review article summarizes the applications of repetitive pulsed power in many fields, such as material development, environment protection, bio- and medical-science, light sources, and high-energy accelerators. The plasma immersion ion implantation and pulsed electron-beam surface treatment have been used in industrial production. Flue-gas and wastewater treatment by pulsed atmospheric discharge are being developed toward practical application. Sterilization and cancer-cell treatment using pulsed electric field have attracted great attention from academic and industrial communities. Plasma generated extreme ultraviolet(EUV) radiation is hopefully going to be used in photo-lithography for mass production in the near future. The thyratrons used on high-energy accelerators will eventually be replaced by power semiconductor devices.
参考文献

[1] 江伟华. 高重复频率脉冲功率技术及其应用:(1) 概述[J]. 强激光与粒子束, 2012,24(1): 10-15.(Jiang Weihua. Repetition rate pulsed power technology and its applications: (i) Introduction. High Power Laser and Particle Beams, 2012,24(1): 10-15)

[2] Yukimura K. Surface modification by three-dimensional ion implantation[J]. Surface Technology, 2001, 52(6): 438-441.

[3] Baba K, Hatada R. Surface modification and thin film deposition PSII[J]. Surface Technology, 2001, 52(6): 449-452.

[4] 黄永宪,田修波,杨士勤, 等. 等离子体浸没离子注入(PⅢ) 过程中初始离子阵鞘层尺度内各物理量的时空演化[J].真空科学与技术学报,2005, 25(2): 115-119.( Huang Yongxian, Tian Xiubo,Yang Shiqin, et al. Temporal evolution in an ion-matrix sheath during plasma immersion ion implantation. Chinese Journal of Vacuum Science and Technology, 2005, 25(2): 115-119)

[5] Pelletier J, Anders A. Plasma-based ion implantation and deposition: A review of physics, technology, and applications[J]. IEEE Trans on Plasma Sci, 2005, 33(6): 1944-1959.

[6] Baba K, Hatada R, Flege S, et al. Deposition of diamond-like carbon films on inner wall surfaces of millimeter-size-diameter steel tubes by plasma source ion implantation[J]. IEEE Trans on Plasma Sci, 2011, 39(11): 3140-3143.

[7] Kwok D T. Numerical simulation of plasma immersion ion implantation and diffusion[J]. IEEE Trans on Plasma Sci, 2007, 35(3): 670-674.

[8] Silva L, Alves L, Tóth A, et al. A study of the effect of nitrogen and air plasma immersion ion implantation treatments on the properties of carbon fiber[J]. IEEE Trans on Plasma Sci, 2011, 39(11): 3067-3071.

[9] Schulz M, Kwok D, Hu T, et al. Three-dimensional quasi-direct-current plasma immersion ion implantation into biomedical nickel–titanium shape memory alloy rod[J]. IEEE Trans on Plasma Sci, 2009, 37(11): 2245-2249.

[10] Hála M, Zabeida O, Klemberg-Sapieha J, et al. Dynamics of HiPIMS discharge operated in oxygen[J]. IEEE Trans on Plasma Sci, 2011, 39(11): 2582-2583.

[11] Hecimovic A, Ehiasarian A. Temporal evolution of the ion fluxes for various elements in HiPIMS plasma discharge[J]. IEEE Trans on Plasma Sci, 2011, 39(4): 1154-1164.

[12] Nakao S, Yukimura K, Nakano S, et al. DLC coating by HiPIMS: The influence of substrate bias voltage[J]. IEEE Trans on Plasma Sci, 2013, 41(8): 1819-1829.

[13] Proskurovsky D I, Rotshtein V P, Ozur G E, et al. Pulsed electron-beam technology for surface modification of metallic materials[J]. J Vac Sci Technol A, 1998, 16(4): 2480-2488.

[14] Koval N N, Ivanov Y F, Ovcharenko V E, et al. Surface modification of TiC-NiCrAl hard alloy by pulsed electron beam[J]. IEEE Trans on Plasma Sci, 2009, 37(10): 1998-2001.

[15] Okada A, Uno Y, Nishina K, et al. High efficiency surface finishing of metal mold by large-area electron beam irradiation[J].J Jpn Soc Precision Eng, 2003, 69(10): 1464-1468.

[16] 秦颖,吴爱民,邹建新,等. 强流脉冲电子束表面改性的物理模型及数值模拟[J]. 强激光与粒子束,2003, 15(7): 701-704.(Qin Ying, Wu Aimin, Zou Jianxin, et al. Physical model and numerical simulation of intense pulsed electron beam surface modification. High Power Laser and Particle Beams, 2003, 15(7): 701-704.

[17] Jiang W, Yatsui K. Pulsed wire discharge for nanosize powder synthesis[J]. IEEE Trans on Plasma Sci, 1998, 26(5): 1498-1501.

[18] 毛志国,邹晓兵,王新新,等. 电爆金属丝产生纳米粉体[J]. 强激光与粒子束,2010, 22(3): 691-695.(Mao Zhiguo, Zou Xiaobing, Wang Xinxin, et al. Nano-powder production by electrical explosion of wires. High Power Laser and Particle Beams, 2010, 22(3): 691-695)

[19] Suzuki T, Keawchai, K, Jiang W, et al. Nanosize Al2O3 powder production by pulsed wire discharge[J]. Jpn J Appl Phys, 2001, 40(2B): 1073-1075.

[20] Kinemuchi Y, Ikeuchi T, Suzuki T, et al. Synthesis of nanosize PZT powders by pulsed wiredischarge[J]. IEEE Trans on Plasma Sci, 2002, 30(5): 1858-1862.

[21] Murai K, Cho C, Suematsu H, et al. Particle size distribution of copper nanosized powders prepared by pulsed wire discharge[J]. IEEE Trans on Fundamentals and Materials, 2005, 125(1): 25-29.

[22] Endo F, Jiang W, Yatsui K, et al. NOx treatment using inductive-energy-storage pulsed power generator[J]. IEEE Trans on Fundamentals and Materials, 2004, 124(4): 321-325.

[23] Choi Y, Jeong I, Rim G, et al. Development of a magnetic pulse compression modulator for flue gas treatment[J]. IEEE Trans on Plasma Sci, 2002, 30(5): 1632-1636.

[24] Sugai T, Liu W, Tokuchi A, et al. Influence of a circuit parameter for plasma water treatment by an inductive energy storage circuit using semiconductor opening switch[J]. IEEE Trans on Plasma Sci, 2013, 41(4): 967-974.

[25] Minamitani Y, Shoji S, Ohba Y, et al. Decomposition of dye in water solution by pulsed power discharge in water droplets spray[J]. IEEE Trans on Plasma Sci, 2008, 36(5): 2586-2591.

[26] Kobayashi T, Sugai T, Handa T, et al. The effect of spraying of water droplets and location of water droplets on the water treatment by pulsed discharge in air[J]. IEEE Trans on Plasma Sci, 2010, 38(10): 2675-2680.

[27] Suzuki T, Minamitani Y, Nose T. Investigation of a pulse circuit design and pulse condition for the high energy efficiency on water treatment using pulsed power discharge in a water droplet spray[J]. IEEE Trans on Dielectrics and Electrical Insulation, 2011, 18(4): 1281-1286.

[28] Nose T, Yokoyama Y. Effect of iron addition on the decomposition of dye by pulsed discharge in air with water droplets spray[J]. IEEE Trans on Plasma Sci, 2012, 40(12): 3465-3470.

[29] Nose T, Hanaoka Y, Yokoyama Y, et al. Decomposition of sodium acetate by pulsed discharge in water droplet spray[J]. IEEE Trans on Plasma Sci, 2013, 41(1): 112-118.

[30] Golkowski M, Golkowski C, Leszczynski J, et al. Hydrogen-peroxide-enhanced nonthermal plasma effluent for biomedical applications[J]. IEEE Trans on Plasma Sci, 2012, 40(8): 1984-1991.

[31] Soloshenko I, Tsiolko V, Khomich V, et al. Features of sterilization using low-pressure DC-discharge hydrogen-peroxide plasma[J]. IEEE Trans on Plasma Sci, 2002, 30(4): 1440-1444.

[32] Jayaram S. Sterilization of liquid foods by pulsed electric fields[J]. IEEE Electrical Insulation Magazine, 2000, 16(6): 17-25.

[33] Beveridge J, MacGregor S, Anderson J, et al. The influence of pulsed duration on the inactivation of bacteria using monopolar and bipolar profile pulsed electric fields[J]. IEEE Tran on Plasma Sci, 2005, 33(4): 1287-1293.

[34] Schoenbach K, Katsuki S, Stark R, et al. Bioelectrics-new applications for pulsed power technology[J]. IEEE Trans on Plasma Sci, 2002, 30(1): 293-300.

[35] Katsuki S, Mitsutake K, Yano M, et al. Non-thermal and transient thermal effects of burst 100 MHz sinusoidal electric fields on apoptotic activity in HeLa cells[J]. IEEE Trans on Dielectrics and Electrical Insulation, 2010, 17(3): 678-684.

[36] Abe K, Katsuki S. Cancer therapy using nanosecond pulsed electric field[R/OL]. JST New Technology( https://www.jstshingi.jp/abst/p/11/1120/9o226.pdf)

[37] Barron A. Optical issues in photolithography[R/OL]. Connexions (http://cnx.org/content/m25448/latest/)

[38] Ewing J. Excimer laser technology development[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1061-1071.

[39] Ness R, Melcher P, Smith B, et al. Performance characterization for an excimer laser solid-state pulsed power module (SSPPM) after 20B shots[J]. IEEE Trans on Plasma Sci, 2000, 28(5): 1324-1328.

[40] Johns D, Ness R, Smith B. Timing compensation for an excimer laser solid-state pulsed power module (SSPPM)[J]. IEEE Trans on Plasma Sci, 2000, 28(5): 1329-1332.

[41] Preil M. The need for multiple alternatives for sub-20 nm lithography[R/OL]. Future Fab Intl, 2011(38).( http://www.future-fab.com/documents.asp d_ID=4839#)

[42] Wagner C, Harned N. EUV lithograph: Lithography gets extreme[J]. Nature Photonics, 2010(4): 24-26.

[43] Takayama K, Arakida Y, Dixit T, et al. Experimental demonstration of the induction synchrotron[J]. Phys Rev Lett, 2007, 98: 054801.

江伟华. 高重复频率脉冲功率技术及其应用:(6)代表性的应用[J]. 强激光与粒子束, 2014, 26(3): 030201. Jiang Weihua. Repetition rate pulsed power technology and its applications:(ⅵ) Typical applications[J]. High Power Laser and Particle Beams, 2014, 26(3): 030201.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!