中国激光, 2018, 45 (7): 0701004, 网络出版: 2018-09-11  

激光器系统声音响应和隔音特性研究 下载: 694次

Acoustic Response and Sound Insulation Characteristics of Laser System
作者单位
1 山西大学物理电子工程学院, 山西 太原 030006
2 量子光学与光量子器件国家重点实验室, 山西大学光电研究所, 山西 太原 030006
3 山西大学极端光学协同创新中心, 山西 太原 030006
引用该论文

王彦华, 秦林, 任欢, 王军民. 激光器系统声音响应和隔音特性研究[J]. 中国激光, 2018, 45(7): 0701004.

Yanhua Wang, Lin Qin, Huan Ren, Junmin Wang. Acoustic Response and Sound Insulation Characteristics of Laser System[J]. Chinese Journal of Lasers, 2018, 45(7): 0701004.

参考文献

[1] Hänsch T W. Nobel lecture: passion for precision[J]. Review of Modern Physics, 2006, 78(4): 1297-1309.

    Hänsch T W. Nobel lecture: passion for precision[J]. Review of Modern Physics, 2006, 78(4): 1297-1309.

[2] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-639.

    Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-639.

[3] 胡玉霞, 赵南京, 甘婷婷, 等. 水体细菌微生物多波长透射光谱解析模型[J]. 光学学报, 2017, 37(8): 0830001.

    胡玉霞, 赵南京, 甘婷婷, 等. 水体细菌微生物多波长透射光谱解析模型[J]. 光学学报, 2017, 37(8): 0830001.

    Hu Y X, Zhao N J, Gan T T, et al. An analytical model for multi-wavelength transmittance spectra of bacteria in water[J]. Acta Optica Sinica, 2017, 37(8): 0830001.

    Hu Y X, Zhao N J, Gan T T, et al. An analytical model for multi-wavelength transmittance spectra of bacteria in water[J]. Acta Optica Sinica, 2017, 37(8): 0830001.

[4] Turyshev S G. Experimental tests of general relativity: recent progress and future directions[J]. Physics-Uspekhi, 2009, 52(1): 3-34.

    Turyshev S G. Experimental tests of general relativity: recent progress and future directions[J]. Physics-Uspekhi, 2009, 52(1): 3-34.

[5] 应智慧, 高春峰, 王琦, 等. 高精度激光多普勒测速仪在陆用自主导航系统中的应用[J]. 中国激光, 2017, 44(12): 1204003.

    应智慧, 高春峰, 王琦, 等. 高精度激光多普勒测速仪在陆用自主导航系统中的应用[J]. 中国激光, 2017, 44(12): 1204003.

    Ying Z H, Gao C F, Wang Q, et al. Application of high-accuracy laser doppler velocimeter in self-contained land navigation system[J]. Chinse Journal of Lasers, 2017, 44(12): 1204003.

    Ying Z H, Gao C F, Wang Q, et al. Application of high-accuracy laser doppler velocimeter in self-contained land navigation system[J]. Chinse Journal of Lasers, 2017, 44(12): 1204003.

[6] Kourogi M, Nakagawa K, Ohtsu M. Wide-span optical frequency comb generator for accurate optical frequency difference measurement[J]. IEEE Journal of Quantum Electronics, 1993, 29(10): 2693-2701.

    Kourogi M, Nakagawa K, Ohtsu M. Wide-span optical frequency comb generator for accurate optical frequency difference measurement[J]. IEEE Journal of Quantum Electronics, 1993, 29(10): 2693-2701.

[7] Rafac R J, Young B C, Beall J A, et al. Sub-dekahertz ultraviolet spectroscopy of 199Hg + [J]. Physical Review Letters, 2000, 85(12): 2462-2465.

    Rafac R J, Young B C, Beall J A, et al. Sub-dekahertz ultraviolet spectroscopy of 199Hg + [J]. Physical Review Letters, 2000, 85(12): 2462-2465.

[8] 王杰, 高静, 杨保东, 等. 铷原子饱和吸收光谱与偏振光谱对780 nm半导体激光器稳频的比较[J]. 中国光学, 2011, 4(3): 305-312.

    王杰, 高静, 杨保东, 等. 铷原子饱和吸收光谱与偏振光谱对780 nm半导体激光器稳频的比较[J]. 中国光学, 2011, 4(3): 305-312.

    Wang J, Gao J, Yang B D, et al. Comparison of frequency locking of 780 nm diode laser via rubidium saturated absorption and polarization spectroscopies[J]. Chinese Optics, 2011, 4(3): 305-312.

    Wang J, Gao J, Yang B D, et al. Comparison of frequency locking of 780 nm diode laser via rubidium saturated absorption and polarization spectroscopies[J]. Chinese Optics, 2011, 4(3): 305-312.

[9] Wieman C, Hänsch T W. Doppler-free laser polarization spectroscopy[J]. Physical Review Letters, 1976, 36(20): 1170-1173.

    Wieman C, Hänsch T W. Doppler-free laser polarization spectroscopy[J]. Physical Review Letters, 1976, 36(20): 1170-1173.

[10] Drever R W P, Hall J L, Kowalski F V, et al. . Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.

    Drever R W P, Hall J L, Kowalski F V, et al. . Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.

[11] Schawlow A L, Townes C H. Infrared and optical masers[J]. Physical Review, 1958, 112(6): 1940-1949.

    Schawlow A L, Townes C H. Infrared and optical masers[J]. Physical Review, 1958, 112(6): 1940-1949.

[12] 焦东东, 高静, 刘杰, 等. 用于光频传递的通信波段窄线宽激光器研制及应用[J]. 物理学报, 2015, 64(19): 0190601.

    焦东东, 高静, 刘杰, 等. 用于光频传递的通信波段窄线宽激光器研制及应用[J]. 物理学报, 2015, 64(19): 0190601.

    Jiao D D, Gao J, Liu J, et al. Development and application of communication band narrow linewidth lasers[J]. Acta Physica Sinica, 2015, 64(19): 0190601.

    Jiao D D, Gao J, Liu J, et al. Development and application of communication band narrow linewidth lasers[J]. Acta Physica Sinica, 2015, 64(19): 0190601.

[13] Wu L F, Jiang Y L, Ma C Q, et al. 0.26-Hz-linewidth ultrastable lasers at 1557 nm[J]. Scientific Reports, 2016, 6: 24969.

    Wu L F, Jiang Y L, Ma C Q, et al. 0.26-Hz-linewidth ultrastable lasers at 1557 nm[J]. Scientific Reports, 2016, 6: 24969.

[14] Kessler T, Hagemann C, Grebing C, et al. A sub-40 mHz linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692.

    Kessler T, Hagemann C, Grebing C, et al. A sub-40 mHz linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692.

[15] Matei D G, Legero T, Häfner S, et al. 1.5 μm lasers with sub-10 mHz linewidth[J]. Physical Review Letters, 2017, 118(26): 263202.

    Matei D G, Legero T, Häfner S, et al. 1.5 μm lasers with sub-10 mHz linewidth[J]. Physical Review Letters, 2017, 118(26): 263202.

[16] 秦利娟, 秦林, 王彦华, 等. 光栅外腔反馈半导体激光器及稳频系统的动态特性测试[J]. 山西大学学报(自然科学版), 2017, 40(4): 789-796.

    秦利娟, 秦林, 王彦华, 等. 光栅外腔反馈半导体激光器及稳频系统的动态特性测试[J]. 山西大学学报(自然科学版), 2017, 40(4): 789-796.

    Qin L J, Qin L, Wang Y H, et al. Dynamic response of the grating-feedback external cavity diode laser and frequency stabilization system[J]. Journal of Shanxi University (Natural Science Edition), 2017, 40(4): 789-796.

    Qin L J, Qin L, Wang Y H, et al. Dynamic response of the grating-feedback external cavity diode laser and frequency stabilization system[J]. Journal of Shanxi University (Natural Science Edition), 2017, 40(4): 789-796.

[17] Yoshikawa Y, Umeki T, Mukae T, et al. Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor[J]. Applied Optics, 2003, 42(33): 6645-6649.

    Yoshikawa Y, Umeki T, Mukae T, et al. Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor[J]. Applied Optics, 2003, 42(33): 6645-6649.

[18] Pearman C P, Adams C S, Cox S G, et al. Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking[J]. Journal of Physics B: Atomic Molecular & Optical Physics, 2002, 35(24): 5141-5151.

    Pearman C P, Adams C S, Cox S G, et al. Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking[J]. Journal of Physics B: Atomic Molecular & Optical Physics, 2002, 35(24): 5141-5151.

王彦华, 秦林, 任欢, 王军民. 激光器系统声音响应和隔音特性研究[J]. 中国激光, 2018, 45(7): 0701004. Yanhua Wang, Lin Qin, Huan Ren, Junmin Wang. Acoustic Response and Sound Insulation Characteristics of Laser System[J]. Chinese Journal of Lasers, 2018, 45(7): 0701004.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!